STARS AND LIGHT

Astronomy

Light

- Light interacts with _____ in 4 ways: _____, absorption, _____, and reflection
- The light we see is referred to as "_____ light"
 - We see a "_____ of colors", that when perceived together produce *white light*.

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

b: © Stephen E. Schneider

4 Interactions between Light and Matter

4 Interactions between Light and Matter

- 1. Emission: a light bulb _____ visible light.
- Absorption: when you place your hand near an light bulb, your hand _____ some of the light. "Opaque" objects absorb light.
- 3. Transmission: Some forms of ______, such as glass or air, ______ light, or allow light to pass through.
- 4. Reflection/scattering: light can _____ off matter, leading to _____ (bouncing is in same general direction) or _____ (bouncing of light is more random)

Light

- Spectrum- a ______ forms(colors).
 - "ROY G BIV"

Spectrum- a _____ showing light in its _____

- White Light is what we call light from the _____ or from a light bulb.
 - Seen when we view equal _____ of all colors
 - Black is what we perceive when there is no _________
 and hence no ________.
 - We see the color that is being _____ from objects to our eyes (that object is absorbing all other colors)

What is Light?

Light , AKA "_____ Radiation" is a form of energy

Light is both a _____ and a particle.

- Electromagnetic Wave- vibrates electric and ______ fields (not particles).
 - Can be observed by lining up ______ that wriggle like a snake when they interact with electromagnetic waves.
- **Photon** a "_____" or particle of light.
 - can be counted because they strike objects one at a time.
 - Every photon carries a specific amount of energy.

What is Light?

Light , AKA "Electromagnetic Radiation" is a form of energy

Light is both a wave and a particle.

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

What is Light? (cont'd)

Electromagnetic Waves have 3 basic properties:

- 1. ____(λ) distance from one peak to the next
- ____(f) number of peaks that pass by any point in one second.
- 3. ____(c) how fast the peaks travel.
 - Speed of Light (c) = _____ km/s
 - The "speed of light" is always the same for any time of electromagnetic radiation.

What is Light? (cont'd)

Wavelength and frequency of a light wave are related to energy.

What is Light? (cont'd)

Humans can ______ electromagnetic waves within a short range of ______. Each color of the rainbow has

a different wavelength and frequency.

Visible Light wavelengths range from _____nm (blue/violet) → _____nm (red)

Violet (short wavelength)

Each color on the electromagnetic spectrum has a different wavelength.

Electromagnetic Spectrum

- There is light "beyond the rainbow".
- Visible Light differs from other forms of _____ only in the _____ and _____ of photons.

The Electromagnetic Spectrum is the entire range of wavelengths from short gamma rays to long radio waves.

(Active galaxy): © NRAO/AUI/NSF; © Science Source

Electromagnetic Spectrum

 Note: This graphic shows higher energy radiation on the _____ and lower on the _____ (opposite from previous slide)

The Electromagnetic Spectrum

 The *electromagnetic spectrum* is composed of waves, ______, infrared, visible light, , x rays, and ______ rays

- _____ wavelengths are more than 10³ km
 _____ wavelengths are less than 10⁻¹⁸ m
- Various instruments used to explore the various regions of the spectrum

Infrared Radiation

- Sir William Herschel (around 1800) showed heat radiation related to visible light
- He measured an elevated temperature just off the red end of a solar spectrum *infrared* energy

un and stars	Col interste clou
↓ easing energy	ļ
\bigwedge	\wedge
ing wavelengt	th
000 nm 10	00 μm I
Infrared	
TV remote	

Inc. Permission require

Our skin feels
 _____ as heat

Ultraviolet Light

 J. Ritter in 1801 noticed silver blackened when exposed to "light" just beyond the violet end of the visible spectrum

- Mostly absorbed by the
- Responsible for suntans (and burns!)

Radio Waves

- Predicted by Maxwell in mid-1800s, _____ produced *radio waves* in 1888
- Jansky discovered radio waves from cosmic sources in the 1930s, the birth of radio astronomy
- Radio waves used to study a wide range of astronomical processes
- Radio waves also used for

 ______, microwave ovens, and search for extraterrestrials

uired for reproduction or display.

t © The McGraw-Hill Com

- Roentgen discovered X rays in 1895
- First detected beyond the ______ in the Sun in late 1940s
- Used by _____ to scan bones and organs
- Used by astronomers to detect black holes and tenuous gas in distant galaxies

Gamma Rays

Copyright © The

- Gamma Ray region of the spectrum still relatively ______
- _____ absorbs this region, so all observations must be done from orbit!
- We sometimes see bursts of gamma ray radiation from deep _____

We can see MORE using long and short-wave detecting telescopes

Antennae: Merging Galaxies

Composite image NASA

Visible 1, Infrared B, X-ray III

We can see MORE using long and short-wave detecting telescopes

M31 Andromeda Galaxy

Composite Image NASA

Visible 6, Infrared D, X- Ray II

NASA/JPL Caltech/CXC/SAO/STScI

Energy Carried by Electromagnetic Radiation (as mentioned previously)

- Each photon of _____ λ carries an _____ E given by the formula:

$E = hc/\lambda$

where h is Planck's constant, c is speed of light

- Notice that a _____ of short wavelength radiation carries more energy than a long wavelength _____
- wavelength = high frequency = _____ energy
 wavelength = low frequency = _____ energy

Different Wavelengths, Different Science

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Radio): Max-Planck-Institut & SPIRE Consortium, O. Krause, HSC, H. Linz; (Visible): Courtesy NOAO/AURA/NSF (Ultraviolet): NASA/Swift/Stefan Immler (GSFC) and Erin Grant (UMCP); (X-ray): ROSAT, MPE, NASA

- We "see" different phenomena in different wavelengths.
- light shows the distribution of stars.
- Infrared reveals dust in the galaxy.

reveal supernovae, etc.

Crab Nebula

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

a: Courtesy of Richard Wainscoat; b: NRAO/AUI/NSF; c: Courtesy of NASA/CXC/SAO

Visible Light Photograph

Radio Image

X-Ray Image in false color

Check for Understanding!

- What is wavelength? What's the symbol for wavelength? Draw a diagram to show what wavelength is.
- Which has a longer wavelength, blue or red light?
- How is wavelength related to frequency and energy?
- What form of electromagnetic energy has the highest energy? Lowest energy?

Electromagnetic Spectrum, cont'd

- The various forms of ______ Radiation each interact with matter in unique ways.
- Atoms and ______ that make up objects in the universe leave unique "fingerprints" in light that astronomers decode.
- Astronomers seek to _____ light of all wavelengths to determine the _____ of objects, their _____, and relative _____.

Spectroscopy

opyright © McGraw-Hill Education. Permission required for reproduction or display.

- Allows the determination of the composition and conditions of an astronomical body
- In _____, we capture and analyze a spectrum
- Spectroscopy assumes that every _____ or molecule will have a unique spectral signature

Spectra

- **Spectroscopy-** the process of _____ a light spectrum from an object and reading the information that it _____.
- Spectra look like _____

Ultraviolet Blue Green

wavelength

Infared

Copyright @ Addison Wesley

intensity

Types of Spectra

Continuous spectrum

- Spectra of a _____ (source that emits all wavelengths of visible light)
- Produced by an incandescent light bulb, for example.

Emission-line spectrum

- Produced by ______, tenuous gases, as photons emit a specific wavelength of electromagnetic radiation.
- _____ tubes, aurora, and many interstellar clouds are typical examples

Absorption-line spectrum

- Light from blackbody passes through cooler _____ leaving dark absorption lines (shows which wavelengths are absorbed by the gas)
- Fraunhofer lines of Sun are an example

tenuous cases, as photons emit a specific

Can you identify the names of spectra A, B, & C?

B

С

Spectra, continued

In a cloud of ______, atoms are constantly colliding and exchanging energy, causing:

- 1. Atoms like to _____ in new directions, colliding with other atoms.
- 2. A transfer of energy to ______, making them move to higher energy levels.

An electron can ONLY get to next higher level if given the exact amount of ______ energy. It will then drop back down to its ______ level, releasing the amount of ______ it gained in the form of photons.

Helium Emission Spectrum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hydrogen

Spectra, (Emission Lines)

*Elements release ______ of unique wavelengths

The bright _____ show the wavelength of photons that are emitted from a gas cloud.

Remember, each color has a specific _____.

Each of the spectra above comes from a different gaseous element.

Continuous and Absorption Spectra

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Spectra, continued

***Spectroscopy** is used to determine the ______ of bodies in space

The Solar Spectra Copyright @ McGraw-Hill Educe

The composition of the _____ has been determined using a careful study of spectral lines.

Element	Relative Number of Atoms	Percent by Mass
Hydrogen	10 ¹²	71.1%
Helium	9.64×10^{10}	27.4%
Oxygen	5.75×10^{8}	0.65%
Carbon	2.88×10^{8}	0.25%
Neon	8.91×10^{7}	0.13%
Nitrogen	7.94×10^{7}	0.08%
Silicon	4.07×10^{7}	0.06%
Iron	3.47×10^{7}	0.14%
Gold	8	0.00000011%
Uranium	0.4	0.00000007%

Spectra (wavelength intensity graphs)

 The pattern observed in wavelength ______ graphs is sometimes more ______ than just the spectral lines.

Spectra (temperature)

Temperature of light emitting objects can be using spectroscopy.

Spectra (motion)

Doppler Shift in Sound- *pitch* (_______) gets higher when an object is coming toward you; pitch (_______) gets lower when an object is moving away.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Spectra (motion)

Doppler Shift in light: If a source of ______ is set in motion relative to an ______, its spectral lines shift to new wavelengths in a similar way

Redshift: the shift to longer wavelengths when an object moves away from us.

Blueshift: the shift to longer wavelengths when an object moves towards us.

TABATHA BOYAJIAN, ASTRONOMER TED TALK: "THE MOST MYSTERIOUS STAR IN THE UNIVERSE"

https://www.youtube.com/watch?v=gypAjPp6eps

Tabetha Boyajian Astronomer Royale, Yale University

I am a postdoctoral Fellow at Yale University. My research interests involve determining the fundamental properties of stars and characterization of exoplanet host stars. My observing experience includes long baseline optical/infrared interferometry, and optical spectroscopy. I also work on modeling data from the Kepler space telescope for the PlanetHunters project (www.planethunters.org).

How are you doing?

- 1. What type of spectrum is this?
- 2. How are these lines produced?
- 3. Explain how composition of an object can be determined using spectral lines.
- 4. You observe a blue star and a red star. Which is hotter?
- 5. An astronomer notices the shift of spectral lines towards higher wavelengths. What does this indicate about the motion of that object?

fill in the spectrum