BRIGHTNESS

Brightness of a star depends on _____and how much light it emits.

- Apparent Brightness or _____ The brightness of a star as it appears to our eyes; does not take distance into account.
- _____ the total amount of power that a star emits into space.
 - Stellar Luminosities span a _____ range!
 - Stellar luminosities are stated in comparison to the Sun's luminosity, which we write as L_{Sun} for short.

Stars

Examples of Stellar Luminosities

- Proxima Centauri (the nearest neighbor) is about 0.0006 times as luminous as the Sun, or _____
- Betelgeuse (bright left shoulder of _____): 38,000 L_{Sun}

Two important Lessons:

1. Stars have a wide range of luminosities and our Sun is somewhere in the _____.

Range = $(10^{-4}L_{Sun} - 10^{6}L_{Sun})$

2. _____ stars are more common than bright stars.

Brightness

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Brightness decreases with distance.

Properties of Stars <u>STELLAR TEMPERATURES</u>

Unless otherwise stated, when you hear "temperature" in terms of a star, it is referring to <u>temperature</u>.

• Why? Surface temperature is directly measurable; interior temperatures are inferred from mathematical models.

Color and Temperature

Thermal Radiation (heat) at the _____ depends on the average energy emitted from the surface.

- Temperature can be deduced from the color of its emitted light.
- In general, <u>hot stars emit</u> <u>light</u>; <u>cooler stars emit</u> <u>red light</u>.

Color and Temperature

Betelgeuse is red compared to _____. This plot of wavelengths vs brightness shows that the stars peak at different wavelengths.

STELLAR TEMPERATURES, continued

Astronomers classify stars according to _____ temperature by assigning a **spectral type** (determined from spectral lines)

Spectral Types: (O, B, A, F, G, K, M)

Each is then further subdivided into #'s _____. The larger the number, the _____ the star. Sun is a G2

Spectral Types

Table 13.3 Summary of Spectral Types

Spectral Type	Temperature Range (K)	Features	Representative Star
0	Hotter than 30,000	Ionized helium, weak hydrogen	
В	10,000–30,000	Neutral helium, hydrogen stronger	Rigel
A	7500–10,000	Hydrogen very strong	Sirius
F	6000-7500	Hydrogen weaker, metals (especially ionized Ca) moderate	Canopus
G	5000-6000	Ionized Ca strong, hydrogen even weaker	The Sun
K	3500–5000	Metals strong, CH and CN molecules appearing	Aldebaran
М	2000-3500	Molecules strong, especially TiO and water	Betelgeuse
L	1300–2000	Metal hydrides, water, and reactive metals strong, but no TiO	
Т	700–1300	Strong lines of water and methane	
Y	<700	Absorption line at 1.55 μ m, possibly of ammonia	

RADIUS

If two stars have the same _____, but one is more luminous than the other, the more luminous star must have a larger surface area, and therefore a larger radius than the dimmer star. Copyright © McGraw-Hill Education. Permission required for reproduction or display.

RADIUS

Stefan-Boltzmann law:

A star's luminosity depends on its _

X

and temperature.

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

L

 σT^4

Luminosity—total energy radiated per second by the star Energy emitted per second by 1 square meter

 $4\pi R^2$

Number of square meters in surface area of the star

RADIUS, continued

Telescopes can be used to measure the size of stars, but if a star were the size of the Sun and 50 ly away, it would require a telescope _____ meters in diameter!

Solution: Use two or more telescopes separated by large distances (an _____) to measure angular distances of stars.. and radii.

RADIUS, continued

The Stefan Boltzmann law and interferometer observations show that stars differ enormously in radius.

- Some, like Betelgeuse, are hundreds of times larger than the Sun and are called _____.
- Smaller stars (including our Sun) are called ______.

The H-R Diagram

- There are many varieties of stars, but what creates the variety and what does it mean?
- The Hertzsprung Russell _____ shows the relationship between stellar properties.
 - In 1912, astronomers Ejnar Hertzsprung and Henry Norris Russel independently found that if stars are plotted according to their luminosity and their temperature(or spectral type), most fall in a few specific areas of the diagram.

Video: HR Diagram Animation

Main Sequence- the approximately _____ line on the HR diagram along which the majority of stars lie.

Note: Our Sun is a main sequence star

Stellar Radii depends on _____ and surface _____, so it can be determined with the HR Diagram.

Patterns in the H-R Diagram

- Main sequence- 90% of stars fall within this prominent streak
- upper right (large and bright)
 - larger and brighter than main sequence, but smaller and dimmer than supergiants.
 - near lower left; appear white in color because of high temperature

Patterns in the H-R Diagram

Luminosity Classes: I – IV; added to _____ type to give a more complete description of a star's light.

Example: our Sun is a G2V while Rigel is a B8Ia

Class	Description
la	Bright Supergiants
lb	Supergiants
II	Bright Giants
111	Ordinary Giants
IV	Subgiants
V	Main Sequence

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Stellar Lifecycle

- The existence of main sequence stars, red giants, and white dwarfs suggests to astronomers a picture of how stars _____.
- Stellar Evolution- a star's lifecycle from "____" to
 - Driven by gravity- what begins as a gentle tug grows into a crushing force that heats up a stars interior.
 - Energy from _____ constantly replaces the energy the heat that flows out of a star, establishing a balance with gravity as long as nuclear fuel lasts.
 - A star dies when its fuel is _____

Stellar Lifecycle

- All stars form when _____ causes a molecular cloud to contract until the center becomes hot enough for nuclear fusion to occur.
 - **Gravitational Equilibrium-** outward pressure of gas is balanced by the inward force of gravity.
- When the _____ is used up, their structure changes because gravity is no longer counterbalanced.
- A star's life story depends on its _____(how much material it contains).
 - Mass determines how strong gravity is and also how much fuel it has.

Stellar Lifecycle

- 2 Groups:
- Low Mass Stars- follow same _____ as the Sun

2. High Mass Stars- powerful gravitational pull causes _____ collapse after exhausting all their fuel.

Lifecycle of Low Mass Stars

- 1. Interstellar Cloud- cold, dark mass of gas
- 2. Hydrogen \rightarrow Helium fusion begins in core
 - If plotted, stars in this phase are Main Sequence stars.
- 3. After consuming about ______% of hydrogen in the core, the core will shrink, become hotter, and generate energy faster
- 4. Outward flowing energy will cause expansion and cooler outer layers. (_____ Giant)
- 5. Even hotter core fuses helium (_____ Giant).
- When helium is used up, it will grow into a larger red giant (planetary nebula) and outer layers will be driven into space.
- 7. White _____ tiny core but HOT!

Lifecycle of High Mass Stars

High mass stars have a mass that is _____ times greater than the Sun.

- Early life is similar to a
 <u>mass star</u> (originates
 from the collapse of an
 interstellar cloud, but its
 greater mass causes it to have
 higher temperatures)
- High mass stars burn
 <u>faster and therefore</u>
 have shorter life-spans.

Lifecycle of High Mass Stars

- 1. Early life like low mass star
- 2. As a main sequence star, high mass stars are much hotter, bluer, and more luminous than low mass stars.
- 3. When hydrogen is exhausted, the star swells and grows cooler, becoming a **Pulsating** _____ **Giant.**
- 4. Intense gravitational compression of core causes temperature to rise and fuel to be burned more furiously.
- 5. Higher temperature permits star to fuse progressively heavier elements ($H \rightarrow He \rightarrow C \rightarrow O \rightarrow Si \rightarrow Fe$)
 - Iron does not release energy when it is fused
- 6. <u>(Cataclysmic explosion)</u>- heavy elements flow into space when core collapses under the intense gravity
- 7. _____ Star (ball of neutrons) or Black Hole

Black Holes

When a star that was initially more massive than about ______Solar Masses reaches the end of its life and collapses, it creates a core so compact that no radiation (light) can escape.

Additional Resources

- Crash Course: Low Mass Stars
 - <u>https://www.youtube.com/watch?v=jfvMtCHv1q4</u>
- Crash Course: High Mass Stars
 - <u>https://www.youtube.com/watch?v=PWx9DurgPn8</u>
- Crash Course: Black Holes
 - <u>https://www.youtube.com/watch?v=qZWPBKULkdQ</u>