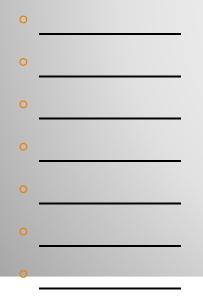


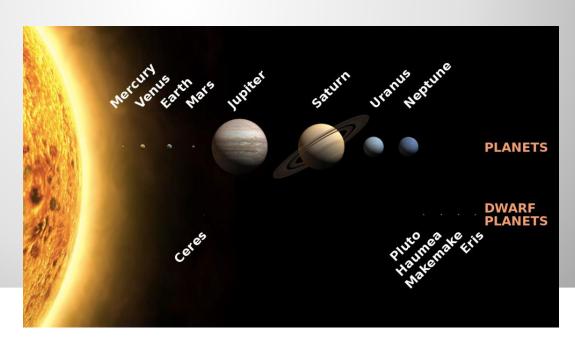
Introduction

Sections:

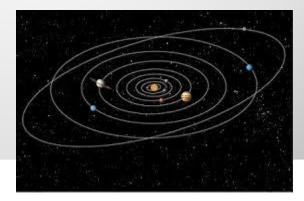
- Components of the Solar System
- Formation of Planetary Systems
- Other Planetary Systems

The Sun


- The Sun is a star
- Star ball of _____ gas whose light and heat are generated by _____ reactions in its core
- It's the largest _____ in the solar system
 - More than 700x the mass of the other objects put together
 - Its gravitational force holds the other planets in place
- Solar System the _____ domination of the planets by the Sun

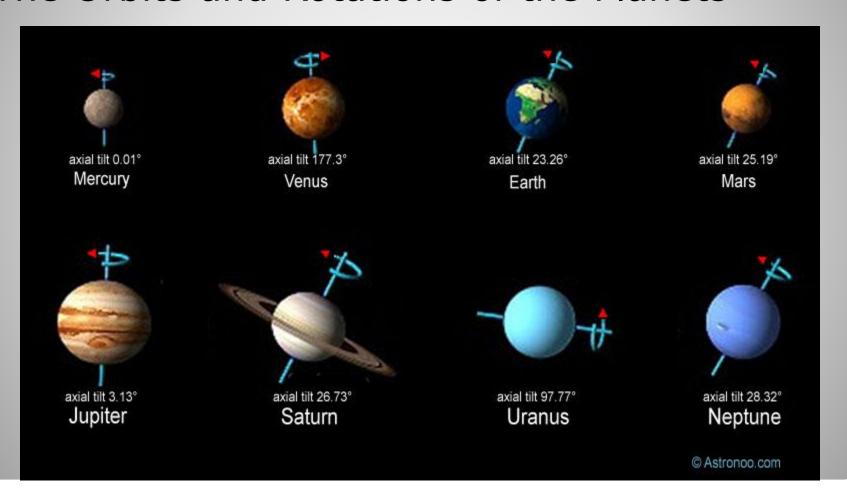

The Sun

- Mostly hydrogen and helium
 - About _____ % H
 - About _____ % He
- Contains small components of:
 - Carbon
 - Iron
 - ____
 - · All in a _____ form!
 - We can tell based off of the spectrum of light it emits



- Planets are much _____ than the Sun
- They emit no ______ light of their own
 - They do shine by reflecting the Sun's light
- Planets in order:

- The _____ of all of the planets around the Sun are mostly ____ and almost about the same plane, ____
 - It almost looks like a spinning pancake with the planets traveling around the Sun in the same direction
- The planets' rotation around the sun is



- As the planets orbit, each "_____ " on its rotation axis
 - The angle of the tilt has to do with how far off of the horizontal plane it is
- Generally, this _____ is in the same direction as the orbit around the Sun
- 2 exceptions to this:
 - 0
 - 0

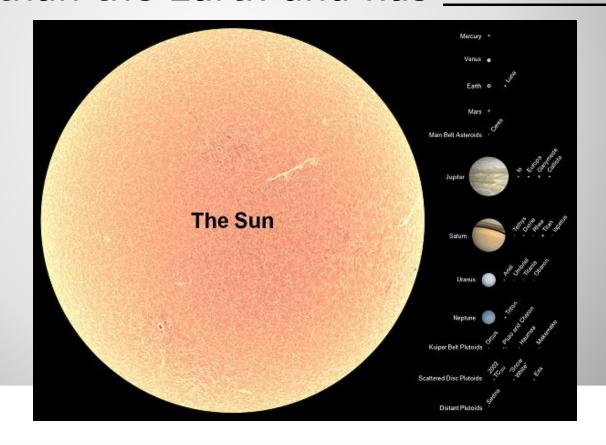
- _____ has an extremely large tilt to its rotation axis (_______°)
- _____ rotation axis has such a large tilt that it actually spins backwards (_____°)
 - Still orbits in the same direction as the others around the Sun
- _____ rotation when a planet's rotation axis is so steep that it spins backwards

The Orbits and Rotations of the Planets

- These two _____ (same _____ orbit and flat _____) are the most fundamental features of the Solar System
- A third factor is that there are two different

types of planets:

- •
- 0
- Based on:
 - Size
 - 0
 - Location in the Solar System


Components of the Solar System Two Types of Planets Inner Planets – _____ bodies

- with relatively thin or no atmospheres
 - Mercury
 - 0
 - Earth
- 0
- Outer Planets _____ and liquid planets that are much _____ and have deep,
 - _____ atmospheres
 - Jupiter
 - 0
 - Uranus
 - 0

Two Types of Planets

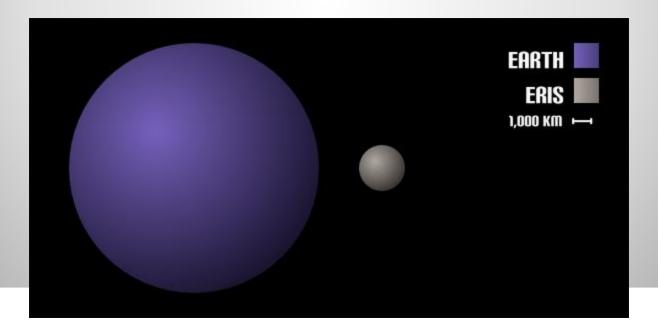
 Jupiter is more than _____ larger in diameter than the Earth and has

its mass

- _____ and ____ are how we describe the planets
- Rock material composed of silicates
 - Silicates composed of ______, O, and other heavier elements like Al, Mg, S, and Fe
- Ice frozen liquids and gases
 - Such as:
 - Regular _____ (H₂O)
 - Frozen _____ dioxide (CO₂)
 - Frozen _____ (NH₃)
 - Frozen _____ (CH₄)

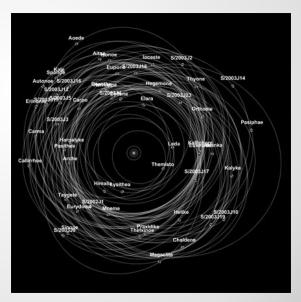
- Looking at the _____ solar system, rock is ____ because of the amount of hydrogen
 - Because of the heat near the sun, the carbon dioxide, methane, water, and ammonia can't condense to mingle with it
- The outer planets have no "________"
 - Their _____ thicken with depth and eventually convert to liquid
 - Therefore we can't "_____ " on Jupiter or the other outer planets

- - Because they resemble _____
- _____ Planets Jupiter, _____ ,
 Uranus, and Neptune
 - Because they resemble



Components of the Solar System Two Types of Planets • Why no Made if and Pluto Odd Super _____ in comparison Astronomers found others similar to it Dwarf Planets – objects that orbit the , are massive enough that their compresses them into an approximately spherical shape, but have not swept their orbital region clear of other

objects that add up to a comparable mass

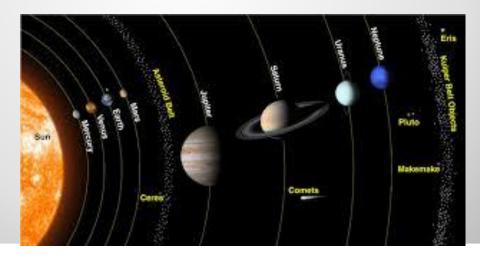

as the

- The discovery of _____ in ____ is what set the demotion of
 - Its closer than Pluto and also larger in size, but still fits the _____ planet criteria

Moons

- As the planets orbit the Sun, most are orbited by other _____
- Moons:
 - Jupiter:
 - Saturn:
 - Uranus:
 - Neptune: _____
 - Mars:
 - Earth: _____

- Even dwarf planets can have moons
 - Ex: Eris has _____


Asteroids and Comets

- Asteroids and comets are far _____ than ____ objects
- Asteroids _____ or ____ objects
 with diameters that range from few meters
 up to about 1000 km
- Comets ____ objects about 10 km or less in diameter that grow huge tails of gas and dust as they near the Sun and are

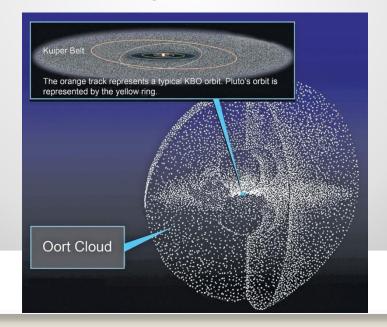
partially _____ by heat

Asteroids and Comets

- These two are not only different in _____
 but also their _____ in the solar system
- Asteroid Belt large _____ between the orbits of _____ and Jupiter where asteroids orbit the Sun

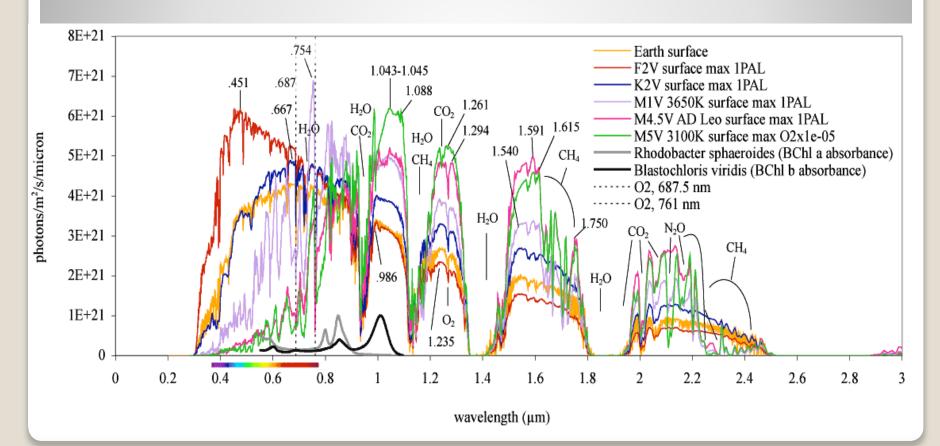
Asteroids and Comets

- Most comets orbit far beyond Neptune
- Oort Cloud _____ region that completely ____ the solar system
 - Extends from about 40,000 to 100,000 AU from the Sun
 - Some can come closer
- Kuiper Belt the disk-like _____ of icy objects that lies just beyond the _____ of ____ of ____ of ____ and extends to be about 50 AU


from the Sun

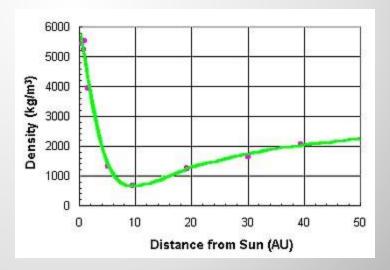
Composition – Inner and Outer Planets

- We can detect a planet's _____ a couple different ways
- Using its ______, we can measure its atmospheric composition and get some info about its ______ rocks (if they're there)
- We use _____ waves to tell us about Earth's interior and even though we haven't been able to do that with the other rock planets yet, it would tell us a lot of


Asteroids and Comets

- The _____ cloud and _____ put together can hold:
 - more than 1 _____ (1x10¹²) comets
 - thousands of _____ objects
 - Several dozen dwarf planets including _____

Composition – Inner and Outer Planets


Earth – detected by _____ and simplified by

Composition – Inner and Outer Planets

 For _____ planets, we can't use any type of ____ work and the spectrum only takes care of the surface and atmosphere

The simplest _____ to use is planetary

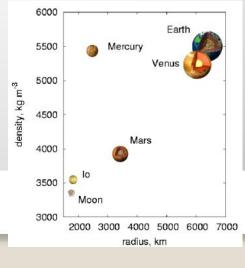
- The average _____ of a planet is its mass divided by its _____
 - We can _____ a planet's mass by observing the orbital motion of one of its moons or a passing spacecraft
 - Then we can calculate the volume of the planet using one of Kepler's formulas from his third law

$$M =$$

Planetary Density

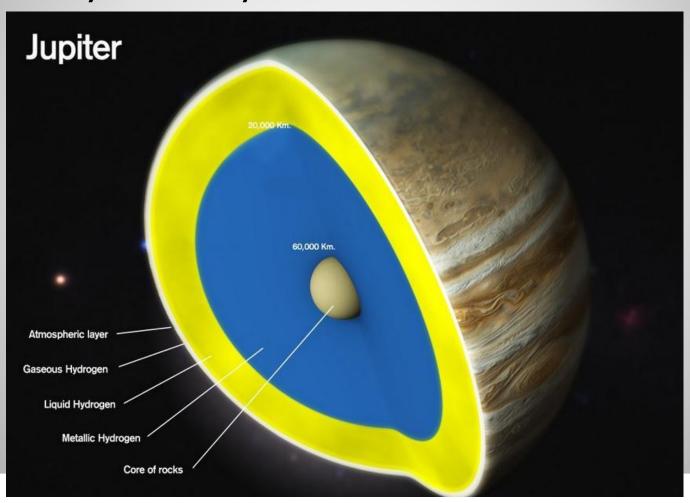
- Volume
 - Variable:
 - *R* _____ of the planet
- Mass
 - Variables:
 - d _____ of object from the planet
 - *G* _____ constant
 - *P* _____ period
- Density

Μ	=

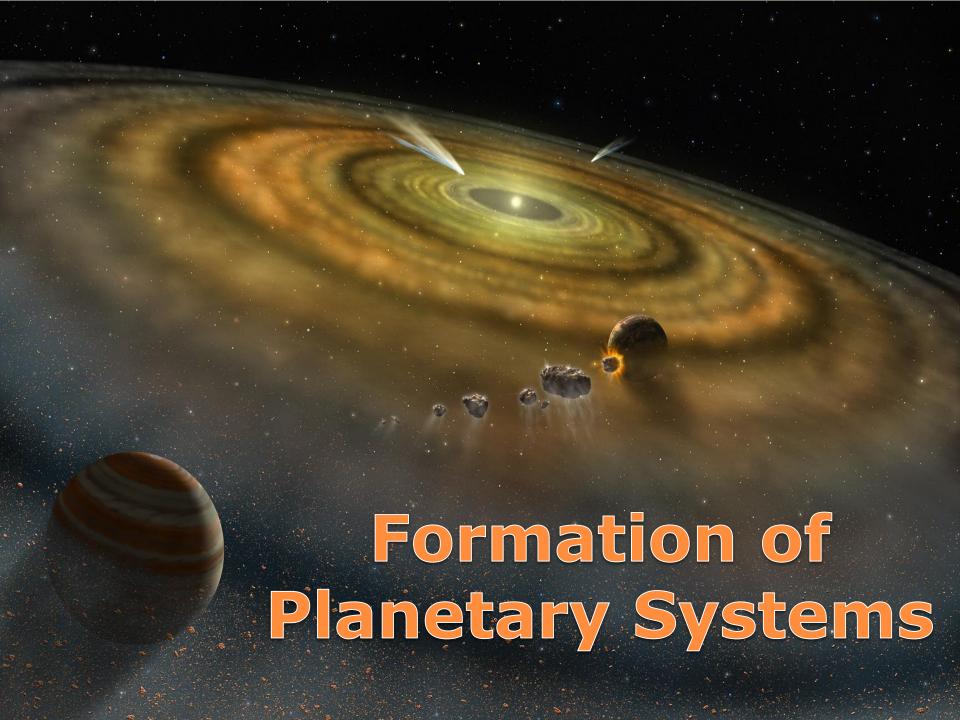

D =____

Planetary Density

Once the planet's _____ density is known, we can compare it with the density of the _____, ___ materials to find what would _____ match up!


We figured this out using Earth's density,
 calculating the silicate and _____ densities and
 cross comparing them with the waves...

it worked!


- of this strategy:
 - Several different _____ that will produce an equally good match to the observed density
 - The _____ of a given material can be affected by the planet's _____ force
- Conclusion:
 - All of the _____ planets have a similar density to _____ (about 3.9 to 5.5 g/cm³)
 - Largely rock with _____ core

- Conclusion
 - All of the _____ planets have a much smaller ____ (.7 to 1.7 g/cm³) similar to ice
 - Contain mainly methane, ammonia, and ice (H₂O)
 - Probably have an _____ core and _____
 base the size of Earth on the inside
 - This was figured out based on the mass calculations and the effects of gravitational pull that these planets can create
 - Jupiter estimated core _____ the mass of Earth... something solid has to be there...

Age of the Solar System

- Outside of their differences in ________, and _______, it seems as though almost everything in the solar system formed at nearly the same time
- We can directly measure that date for the Earth, ______, and some asteroids
 - Thanks to _____ of their rocks
 - None are more than 4.6 billion years old
- The _____ is our age, too
 - Based off of its current brightness, temp., and rate of nuclear fuel consumption

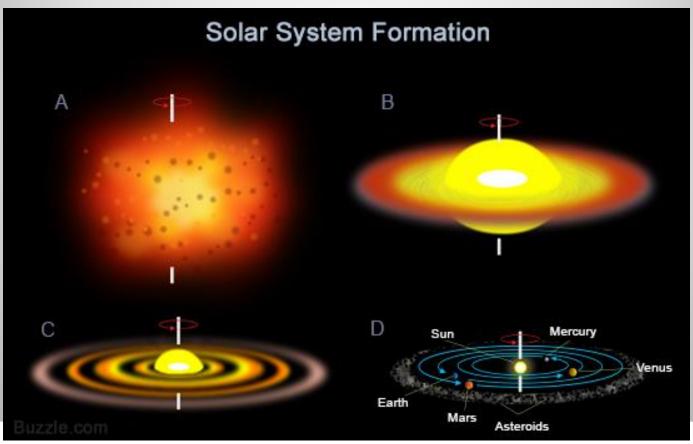
Formation of the Solar Systems

Introduction

• easy to figure out			
Why? We weren't there to it			
 Whatever we come up with has to support 			
these of the solar system:			
 The system is, with all of the planets orbiting the same 			
• There are two types of planets, and			
 With the inner being rock and outer being ice and gas 			
 The of the outer planets isn't too far off of 			
the, and the same is true for the inners			
(minus the gas)			
 All of the whose ages have so far been 			
determined are younger than 4.6x109 old			

Formation of the Solar Systems

Introduction

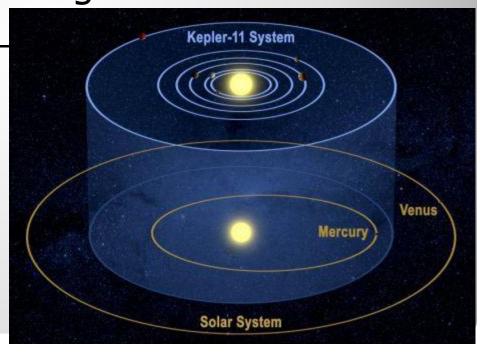

 Top theory: 	Theory
---------------------------------	--------

- States that the _____ system originated from a _____, flattened _____ of gas and dust, with the outer part of the disk becoming the planets and the center becoming the _____
 - Supports: the horizontal plane and the counterclockwise orbit of all of the planets
- We _____ that if there are other solar systems out there that could be similar to ours, their properties must be _____

Formation of the Solar Systems

Introduction

Top theory: Solar Nebula Theory


Introduction

Top theory: Solar Nebula Theory

We are searching for and _____ other

in various stages to see if these

stages are _____

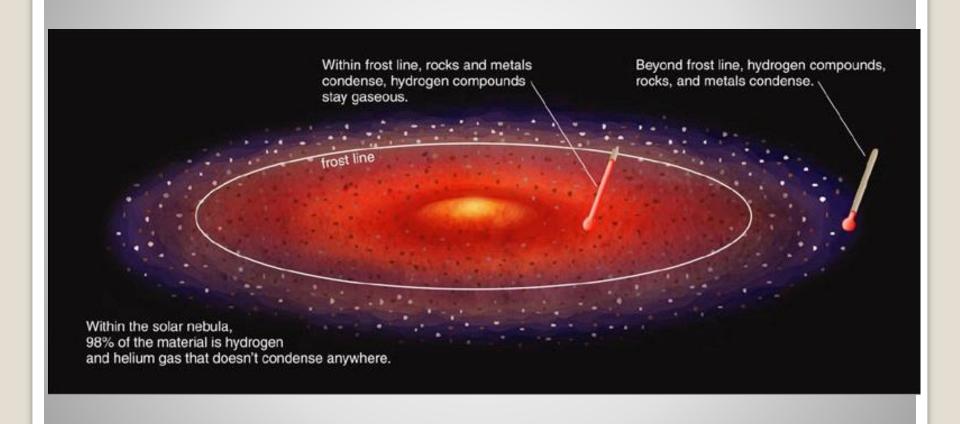
Interstellar Clouds

- Interstellar Cloud _____ rotating
 _____ (whole combo) of _____ and dust
 - Common between stars and astronomers believe these are what developed into each of the stars
 - Right now, _____ stars could have planets orbiting them... we have no way to know for sure right now
 - Both the stars and the planets would have developed from that dust and gas

Interstellar Clouds

- The cloud that developed into the ______ was probably every bit of a couple light years in _____ and twice the present mass of the _____
- Interstellar Grains tiny dust particles found amongst the _____ in interstellar clouds
 - Combo of: ______, iron, _____, and frozen
 - These elements have been shown in the same proportions of the Sun according to the Sun's

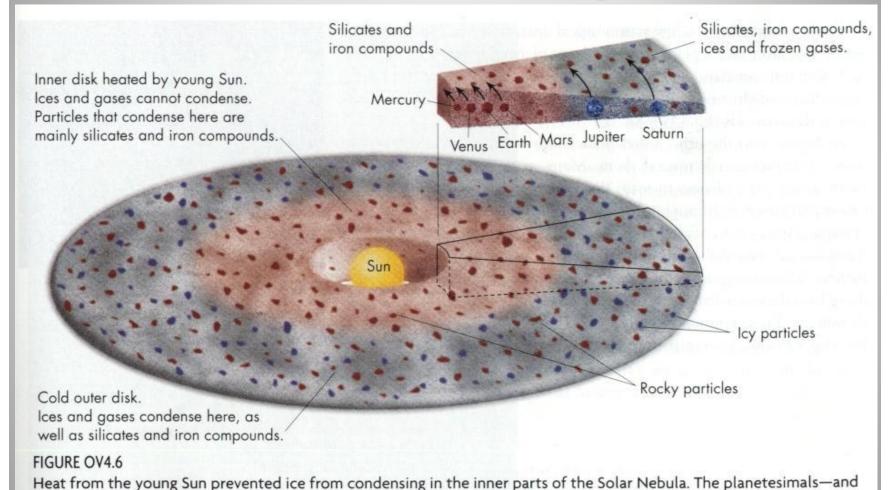
Interstellar Clouds


- The cloud began _____ into the Sun and planets when the gravitational attraction between the _____ in the ____ parts of the cloud caused it to collapse inward
 - Could've been triggered by a star ______
 nearby or hitting into another cloud
 - Because the cloud was ______, it became flat rather than fully collapsing in the middle

Formation of the Solar Nebula

- Solar Nebula rotating _____ with a ____ at the center from a collapsing cloud
 Took a few ____ years to occur
 - Condensed into the planets while the bulge became the sun
 - This supports the disk-like structure and the orbit pattern of the planets
 - Probably about _____ AU in diameter and _____
 10 AU thick
 - Some areas were _____ hot (especially the center) while others were well below the freezing point
 - We have been able to figure this out thanks to the Hubble and seeing the same set-up with other stars

Formation of the Solar Nebula


Condensation in the Solar Nebula

- Condensation occurs when a gas _____ and its molecules stick _____ to form a liquid or solid
 - There was an entire _____ sequence in the solar nebula as it cooled after collapsing
 - The _____ heat could only reach so far and that division in condensation created the inner and outer planets
 - The silicate-iron particles in the inner part
 - Similar _____ part but with _____

Accretion and Planetesimals

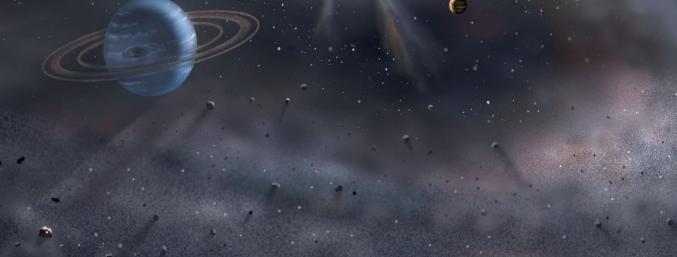
- Accretion when tiny _____ that condensed from the must have begun to stick _____ into bigger pieces This eventually created the planetesimals Planetesimals – small _____ bodies Perhaps held together by electrical forces like static electricity (that weren't too crazy) allowed particles to stick together, too
 - Range in size from a few _____ to km

ultimately the planets—that formed there are therefore composed mainly of rock and iron.

Formation of the Planets

•	officiation of the flattets
	As the planetesimals moved within the
	and, planets began to form
	 Some hit and while others that collided more gently stuck together
	 Due to gravity, substances found in certain areas of the and other chemical factors (like
) it has been concluded that these collisions are what lead the outer planets to be so much larger than the ones
	 Almost all of the planets like Earth, but the inner planets couldn't hold the gas layers like the outers and therefore they became much larger in volume

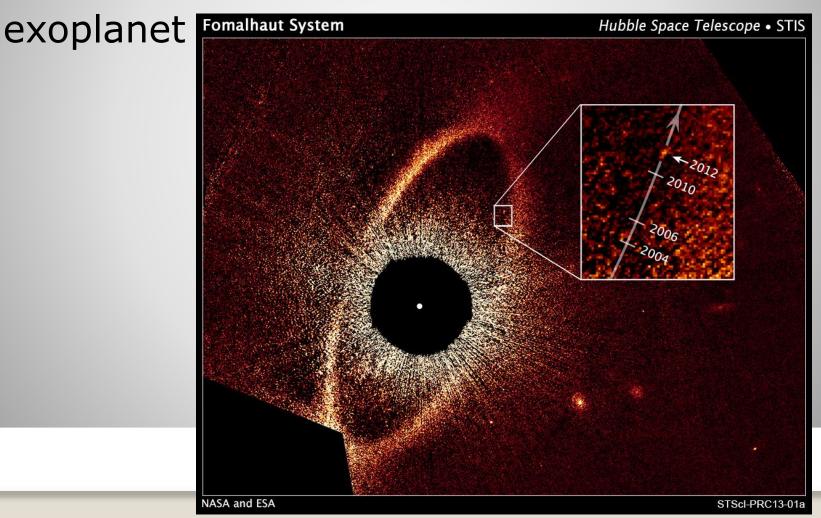
Formation of Satellite Systems


- The satellite systems include the _____
 and other materials that orbit
 - This developed once the _____ was able to develop a larger _____, strong enough to begin attracting other objects to itself
 - Many of the satellites (moons) are about as large as Mercury and would be considered ______ if they orbited the sun rather than another planet

Formation of the Atmospheres

- Last part of the _____
- and outer planets are thought to have formed _____ differently
 - Outer: captured the _____ from the nebula
 - Inner: not _____ enough and too hot to capture the gas from the nebula
 - Likely created their own from _____ and by retaining gases from _____ comets and icy planetesimals that vaporized on contact

Introduction

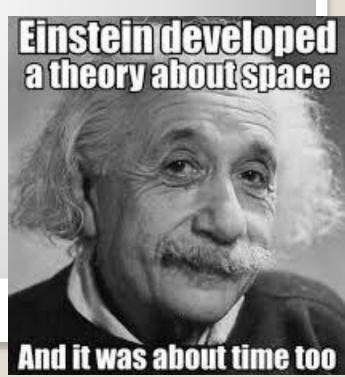

- Exoplanets _____ orbiting _____
 other than the Sun
 - Studying other planets helps us better understand how our solar system _____
 - Most present _____ for exoplanets comes from their effect on the star they orbit
 - The planet exerts a gravitational force back on the star as a result of Newton's third law (actionreaction)
 - This causes the star to wobble which creates a
 _____ shift in the spectra that we can measure

Introduction

- Fomalhaut a star with a _____
 exoplanet
 - Estimated to be a _____ million year old star
 - Has an ice _____ around it (similar to Kuiper's belt)
 - The planet is assumed to have been _____ by accreting that frozen material
 - The exoplanet is really faint and hard to see against the star's light, but the evidence from the star, itself, tells us a lot about that exoplanet

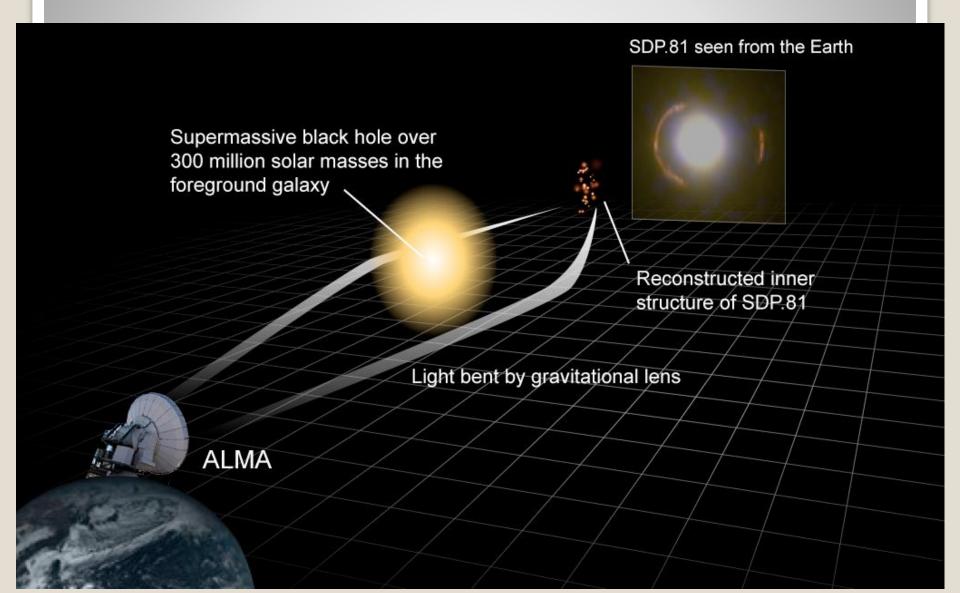
Introduction

Fomalhaut – a star with a detected



Finding Exoplanets

- Many of the objects we pick up on are
 in size and close to their
- This allows us to pick up on that Doppler signal since most are hardly _____, even being large in size.

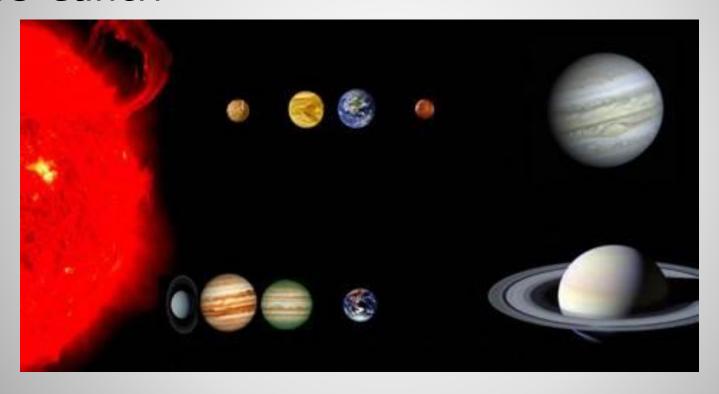

being large in size

Another idea...use ______ approach

Einstein's Approach

- He showed that a mass _____ space in its _____ and that this bending creates the mass's gravity
 - Part of his general theory of _____
- If a _____ of light passes near a mass, the bent space around the mass deflects the light and can bring it to a _____

Einstein's Approach


- Gravitational Lensing _____ of light by gravity
 - Great tool for detecting _____ planets
 - How it works:
 - Measure a star's _____
 - If a planet crosses in between, its mass will bend the light and because of reflection actually focus more light our way (it's not much more, but hey, any little bit helps)
- Astronomers are running _____ of data screens on ____ of stars to detect any slight ____ in that brightness level that might suggest a planet or big body that would be present

Exoplanet Systems

- As of what has been released to the
 _____, astronomers haven't found a
 system that looks ______ like our own
- The nearest match so far is the system of planets orbiting the star 55
 - This sun-like star has five planets orbiting within
 AU of the star just like ours
 - All of the planets are massive (10x Earth)
 - 3 of the planets orbit closer to the star than does from the Sun

Exoplanet Systems

55 Cancri

Exoplanet Systems

- 55 Cancri and its set up really _____ our understanding of how the solar system set itself up
 - having _____ gas planets so close to the star
 - According to solar nebula, they should've formed much _____ back off of the star where the temperatures are much lower
 - Astronomers are working on understanding what's different in _____ like that one that make this scenario possible in its solar system and not ours

Exoplanet Systems

- It is thought that planets in other systems might have the ability to "______ " within the system
- Others are known to have _____ orbits rather than circular ones which can damage or effect the orbits of smaller planets in that same
 - This can either eject them out or cause them to crash into the star

The _____ continues....