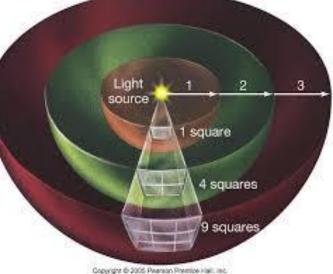

Mutual Gravitation


- Once ______figured out his laws, he was able to better understand _____
 - 1st and 2nd law bodies _____ downward because some force must be pulling _____ on them
 - Ex: the Moon orbiting the Earth
 - It has to be pulled by something and motion along a curved path is accelerated motion which is required by a force causing it to follow that curved path
- Newton anticipated that the same ______ holding the Moon in orbit was the same as ______ here on Earth, but that it might get weaker as it reached outer space

Mutual Gravitation

- Inverse Square Law strength of a _____ will _____ as the square of the ______ increases
 - Saw this with light
 - A screen set up 1 meter away from a candle flame received a certain amount of light and then that light covered 4 sq. meters when the screen was 2 meters away
 - The light intensity was inversely proportional to the square distance of the screen

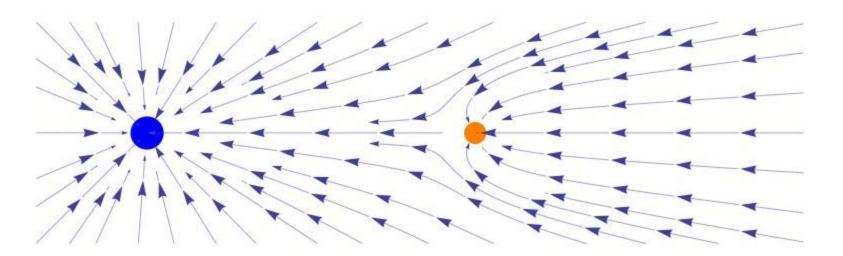
Mutual Gravitation

- Earth's gravity follows the inverse _____ law according to Newton
 - This includes the distance from the Earth's _____ and not surface
 - Ex: the Moon is 60 Earth radii away gravity is 60² (or 360)x less than at the Earth's surface acceleration at Earth's surface is 9.8 m/s² this estimates out to be . _____ m/s²

Figure 2. Moon's gravitational pull plus 2-body rotation

Mutual Gravitation

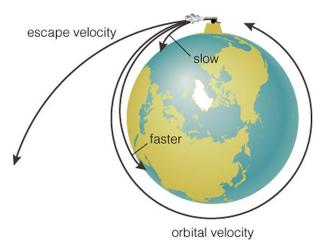
 Gravity depends on _____, and with Earth's mass being so substantial, it's strong enough to hold the _____ in orbit

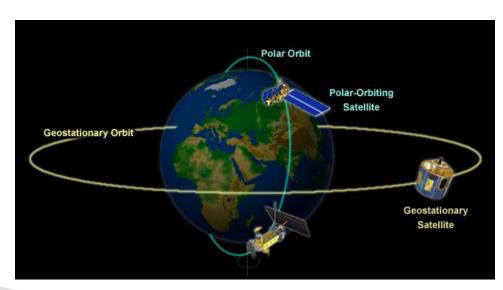

$$\mathsf{F} = -\frac{Gm_1m_2}{r^2}$$

• F – _____

- G gravitational constant
- r _____between the masses
- m₁ mass of the object 1
- m₂ mass of object 2
- The force of gravitational attraction between two masses (m₁ and m₂) is proportional to the product of the masses and inversely proportional to the square of the distance between them

Mutual Gravitation

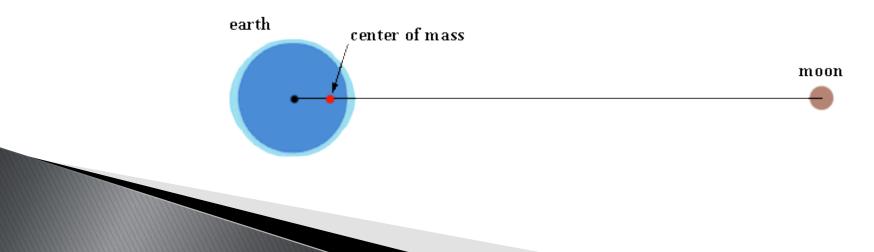

- Field When two objects exert _____ onto each other without physically _____
 - Ex: Earth and the Moon
 - Used to describe gravity that follows the inverse ______


law

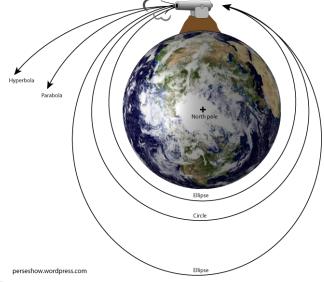
- Orbital motion is how gravity pulls on an _____ object
 - Tidal motion is how gravity pulls on _____ of an object
- was the first to figure out that objects which are orbiting are technically "falling"

- Orbiting Earth:
- 1. An object orbiting Earth is actually falling towards Earth's _____
 - It misses each time because of orbital velocity
 - Circular Velocity the velocity needed to stay in a _____ orbit
 - Just above Earth's atmosphere, circular velocity is about 7780 m/s (17,400 mph) with an orbital period of about 90 minutes

- Orbiting Earth:
- 1. An object orbiting Earth is actually falling towards Earth's center
 - Geosynchronous Satellites satellites that orbit ______ with the rotation of Earth and remain above a fixed ______
 - About 42,230 km (26,240 mi) from Earth's center
 - Orbits in 24 hours



Orbits


Orbiting Earth:

2. Objects that are orbiting each other actually revolve around their mutual center of mass

- An object doesn't orbit Earth, but rather, they orbit each _____
 - Remember, gravity is mutual
- Center of Mass the _____ point of the gravitational system (or two objects)
- Because of Earth's enormous mass, "they" orbit ______ to Earth

- Orbiting Earth:
 - 3. There are closed and open orbits. A certain escape ______ is needed to leave Earth
 - Closed Orbit ____the orbiting object to its original starting point
 - Escape Velocity (V_e) the velocity needed to _____ a body
 - Open Orbit does not _____ the orbiting object back to its original starting point

Orbital Velocity

 Circular Velocity – velocity an object must have in a direction to remain in a _____ orbit

$$V_{\rm c} = \sqrt{\frac{GM}{r}}$$

- G = gravitational constant ($6.673 \times 10^{-11} \text{ m}^3/\text{s}^2\text{kg}$)
- M = mass of the _____ body

Usually Earth (5.97x10²⁴ kg)

- r = radius of the _____ in meters
 - Can also be distance if the information is provided as so

Orbital Velocity

- Ex: Moon's orbital velocity
 - $G = ____ m^3/s^2kg$
 - M = Earth (_____ kg)
 - $r = distance from the Moon to the center of Earth (_____)$

$$V_{\rm c} = \sqrt{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{3.84 \times 10^8}} = \sqrt{\frac{39.8 \times 10^{13}}{3.84 \times 10^8}}$$
$$= \sqrt{1.04 \times 10^6} = 1020 \text{ m/s} = 1.02 \text{ km/s}$$

$$V_{\rm c} = \sqrt{\frac{GM}{r}}$$

Orbital Velocity

- Because of the velocity needed to put the _____ in orbit, large _____ are used to get them above the atmosphere and moving at a speed that sets them in that _____ orbit
- Remember, even outside of Earth's atmosphere there is still _____
 - It may be weak or pulling from another object, but it is there

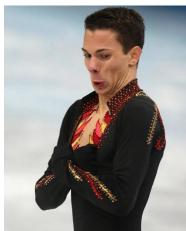
Escape Velocity

 Escape Velocity – (V_e) the _____ required to escape from the surface of an astronomical body

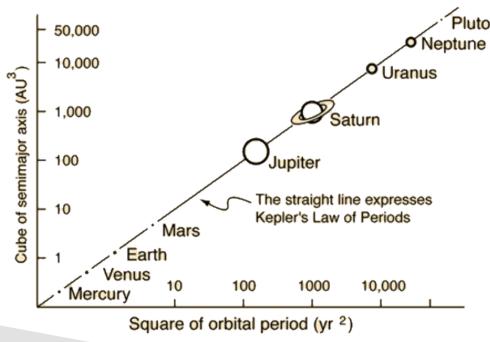
$$V_{\rm e} = \sqrt{\frac{2GM}{r}}$$

- Exactly like the _____ velocity formula in regards to variables
- It is just ______ times the circular velocity

Escape Velocity


Ex: Escaping Earth's atmosphere

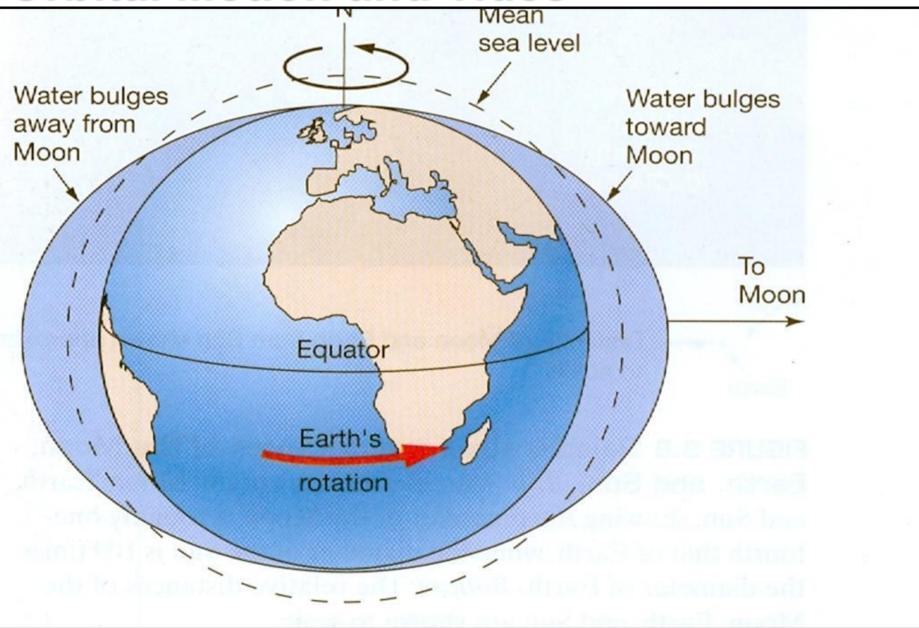
$$V_{\rm e} = \sqrt{\frac{2GM}{r}}$$


• G = _____ m³/s²kg
• M = Earth (______ kg)
• r = Earth's atmosphere average radius (______ m)

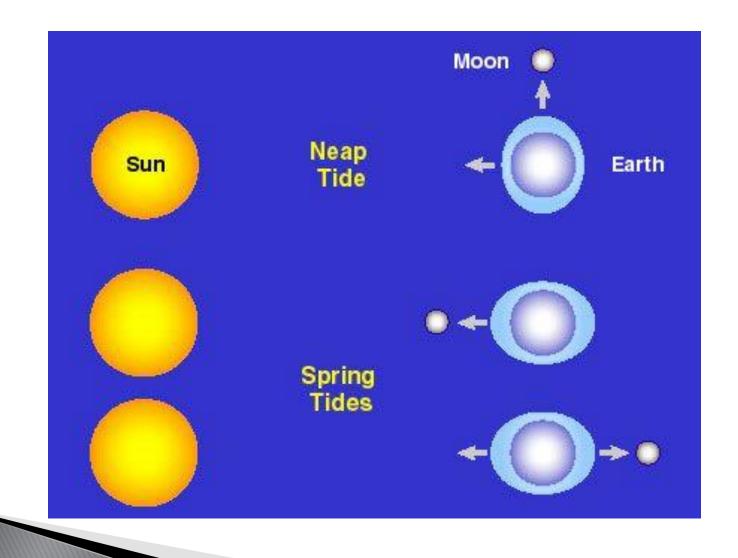
$$V_{\rm c} = \sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{6.37 \times 10^6}} = \sqrt{\frac{7.96 \times 10^{14}}{6.37 \times 10^6}}$$

 $= \sqrt{1.25 \times 10^8} = 11,200 \text{ m/s} = 11.2 \text{ km/s}$

- Kepler's Laws Reexamined
- 1st law orbits of the planets are _____ with the Sun at one focus
- 2nd law a planet moves _____ when it is closest to the Sun and slower when it is farther away
 - Angular momentum a measure of the _____ of the body about some point
 - This remains constant for planets orbiting the sun and moons that orbit planets as long as nothing speeds them up or slows them down



- Kepler's Laws Reexamined
- 3rd law planet's orbital period depends on its from the Sun
 - Relies on energy and the _____ of motion depends on how fast the planet moves
 - The gravitational attraction _____ depends on the size of orbit



Tides and Tidal Forces

- Because gravity is _____ between the Earth and the Moon, the Moon's gravity can explain the ocean
- Tides are caused by small differences in gravitational forces
 - The pull on the side of the _____ facing the Moon causing the water to flow and bulge
 - The opposite happens on the other side of Earth at that time because it has the least _____

- **Tides and Tidal Forces**
- Spring Tides tides that are _____ high and exceptionally low due to a _____ Moon/new Moon and combination with the Sun's pull
 - Yes, the Sun pulls, too, it's just not as dramatic being that it's really far away
 - "Spring" isn't season related but rather the rapid ______ in the water
- Neap Tides tides that are less _____ during quarter Moons because of the 90 degree angle between the Sun and Moon
 Sun cancels out some of the Moon's pull

