

The Moon!

Sections:

1. Introduction
2. Surface and Atmosphere
3. Orbit and Lunar Phases
4. Lunar and Solar Eclipses
5. Tides

MOON'S SURFACE \& ATMOSPHERE

Introduction

Fast Facts...

- Nearest neighbor
- Our largest natural satellite
- $1 / 4^{\text {th }}$ the diameter of Earth
- Barren ball of rock
- No air, water, or life
- Hasn't always been inactive
- Heavily hit in its early days by massive rock fragments - creating most of its current landscape

Surface of the Moon

Surface Features

- Lots of gray colors
- Some areas are darker than others

- Some see a face known as the "Man on the Moon"
- The darker areas are much different in composition than the lighter ones
- Darker = smoother
- Lighter = cratered

Surface of the Moon

Surface Features

- Craters - large circular pits
- These were formed billions of years ago
- Preserved due to the lack of atmosphere, weather, and erosion

Surface of the Moon

Surface Features

- Maria (MAR-ee-ah) - large, smooth, dark areas on the Moon's surface
" From the Latin word "seas"
- Contain no water though
- Ancient astronomers thought they looked like dark oceans
- The Mare Tranquilitiatis ("Sea of Tranquility") is where the first Moon landing occurred

Surface of the Moon

Surface Features

- Highlands - bright areas that surround the maria
- Brighter because it contains different rock material than the maria
- Less dense and much older
- Maria = basalt
- dark, congealed lava rich in $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ti}$, silicates
- similar to the ocean floor here on Earth
- Highlands = anorthosite
- Rock rich in Ca, Al silicates

Surface of the Moon

Surface Features

- Scientists have been able to clarify these rock findings thanks to the samples collected during the Apollo missions
- The highlands are heavily cratered to the point where some overlap
- Many range from less than a cm in diameter to over 200 km across

Surface of the Moon

Surface Features

- Very few craters are volcanic originally
- Some have rounded rims (older) while others have sharper ones (more recent)
- "cratering" has gone on here for a very long time - Getting hit by rock debris

Surface of the Moon

Surface Features

- Rays - long, light streaks of pulverized rock that reach out from a crater
- Best example: Tycho
- Rays can be seen during a full moon

Surface of the Moon

Origin of the Lunar Surface

- Impaction
- The size of the craters depend on the mass and velocity of the impacting object
- As the vaporized rock expands from the point of impact, it forces surrounding rock outward, piling it into a raised circular rim
- Sometimes they can hit so hard that they create a peak of debris in the center of the crater
- Ex: Tycho

Surface of the Moon

Origin of the Lunar Surface

- The Moon was molten when it was first forming
- Full of heat and melted rock (lava)
- It quickly cooled with all of the impaction and became barren early in its lifetime
- Able to detect this history thanks to gamma rays from the Lunar Prospector satellite
- Determined that radioactive heat was present after a large body strike, melting the rock and allowing magma to rise to the surface
- This created the maria

Surface of the Moon

Origin of the Lunar Surface

Surface of the Moon

Origin of the Lunar Surface

- Rilles - lunar canyons
- Some look like river valleys
- Carved by ancient lava flows and just simple cracking of the surface

Surface of the Moon

Origin of the Lunar Surface

- Regolith - rock chunks and fine powder that covers the moon
- Means "blanket of rock"
- Comes from the rock settling and lack of plate tectonics to recycle it
- Several meters deep
- Common on both maria and highlands, just specific to the rock type in those areas

Absence of Moon Atmosphere

Lunar Atmosphere

- Only tiny amounts of gas have been detected on the Moon's surface
- Mostly helium as a by-product of radioactive decay
- Some hydrogen near the Moon's poles
- Density is one-quadrillionth (1/1e-15) of Earth's atmosphere

Absence of Moon Atmosphere

Lunar Atmosphere

- Gone for 2 reasons:

1. no internal activity means no heat being produced
2. low mass = low gravity and can't hold heat

- Temperatures will soar during the day and crash at night

Moon's Orbit

\& Lunar Phases

Moon's Orbit

Introduction

- The Moon can be measured using angular size
- the size of an object in the sky by angle measurement
- The Moon can vary about 14% in angular size because of its elliptical orbit (oval)
- Averages about 380,000 km in distance from Earth
- About 250,000 mi
- Actually varies from 360,000 to $405,000 \mathrm{~km}$ during its orbital period

Moon's Orbit

Moon's Orbit

- The distance to the Moon is measured very precisely using a radar pulse or a laser beam and special reflectors
- They use the time it takes to travel and the speed of light to figure this out ($2 \mathrm{~d}=\mathrm{ct}$)
Accurate down to the cm

Moon's Orbit

Moon's Rotation

- As it orbits, the Moon keeps the same side facing Earth
- It has to slowly rotate in order for the entire planet to see the same face
Synchronous Rotation - when an object does turn on its axis once for every orbital period
-

1 rotation $=1$ full orbit

Moon's Orbit

Odd Features

- Unlike other Moons, ours is tilted in respect to the Earth's equator
- 5 degree tilt
- It gradually wobbles over an 18 year time frame - This results in a tilt anywhere from 18 to 29 degrees

Moon's Phases

Phase Period

- Moon rises in the east and sets in the west
- The Moon's shape will change throughout a month's time due to its orbit around Earth
- Synodic Period - the cycle of lunar phases from new Moon to full Moon and back to new Moon
- takes 29.5 days
-Fun Fact! This was the basis for the month time frame!

New	Waxing
Moon	Crescent

First	Waxing
Quarter	Gibbous

Moon's Phases

Phase Period

- The visual moon changes due to changes in the way sunlight angles off of it
- Waxing - progressing towards a full moon
-What we see gets larger
-Waning - progressing towards a new moon
-What we see gets smaller
- Gibbous - more than $1 / 2$ of the moon is illuminated
-Crescent - less than $1 / 2$ of the moon is illuminated

Moon's Phases

Phase Period

Moon's Phases

Phase Period

- Fact: half of the Moon is always lit by the Sun
- What we see depends on the Moon's positioning throughout its orbit around Earth
- Key points in orbit:

1. Full Moon: Moon is directly behind Earth
2. New Moon: Moon is directly in front of Earth
3. $1{ }^{5 t /} / 3^{\text {rd }}$ Quarter Moon: the angle from the Sun to Earth to the Moon is 90 degrees

Moon's Phases

Phase Period

Moon's Phases

Phase Period

- The Moon's motion around Earth causes it to shift eastward against the stars
- This means the Moon will rise about 50 minutes later each day/night
- Ex: day $1=8: 00 \mathrm{PM}$ rise, day $2=8: 50 \mathrm{PM}$ rise, etc.
- It is NOT always directly opposite of the Sun!
- The Moon and Sun will gradually shift from rising and setting at the same time to rising and setting at opposite times

Moon's Phases

Phase Period

- The time it takes for the Moon to orbit Earth is different than the time it takes to get through all of the lunar phases
- Synodic period = 29.5 days
- Sidreal period $=27.3$ days
- The period of time for the Moon to revolve around Earth

Moon's Phases

Phase Period

New Moon is aligned with both the Sun and a star.

To star

After 27.3 days, the Moon aligns with the star, but it is still a waning crescent.

After 29.5 days the Moon again aligns with the Sun.

Solar \& Lunar

Eclipses

Q. How does the
moon Cuf his hair?

GO
science
Girls
A. Eclipse if.

Eclipses

Angular Diameter and Distance

-The Moon has about the same angular diameter as the Sun
-Even though they are different sizes and distances away
-Linear Diameter - the distance between an object's opposite sides

- The further away an object is, the smaller the angular diameter
-The Moon's linear diameter=3470 km (2160 mi)

Eclipses

Angular Diameter and Distance

-Small-Angle Formula - how to find the angular diameter of an object
angular diameter (arc seconds) linear diameter

2.06×10^{5}
 distance

*The units for distance and linear diameter must be the same!

Eclipses

Angular Diameter and Distance

-Ex: Moon:
angular diameter
2.06×10^{5}
$=1862$ arc seconds
= 31 arc minutes
$=0.5^{\circ}$

Eclipses

Angular Diameter and Distance

-Ex: Sun:
angular diameter
$1.39 \times 10^{6} \mathrm{~km}$
$1.5 \times 10^{8} \mathrm{~km}$
$=1909 \mathrm{arc}$ seconds
$=32$ arc minutes
$=0.5^{\circ} \leftarrow$ same as the Moon

Eclipses

Angular Diameter and Distance

-Apogee - Moon's farthest point from Earth
-Angular diameter $=5.5 \%$ smaller
-Perigee - Moon's closest point from Earth -Angular diameter $=5.5 \%$ larger

Eclipses

Earth's Shadow

-The moon's orbit is only a few degrees off of Earth's orbit around the Sun

- The Earth's shadow points directly away from the Sun at the same level of Earth's orbit

Eclipses

Earth's Shadow

-Lunar Eclipse - can occur at a full Moon if the Moon's path caries it through the shadow of Earth

- sunlight is cut off, and the Moon becomes dim temporarily

-These are unusual because the Moon usually is slightly north or south of Earth's shadow which is how we get a full Moon to be visible

Eclipses

Earth's Shadow

-Umbra - region of total shadow

- The Sun is completely hidden from the Moon behind Earth
-Penumbra - partial shadow
- Part of the Sun would peek around the edge of Earth
- Sunlight is dimmed here, but not diminished

Eclipses

Earth's Shadow

-Umbra \& Penumbra

- The umbra is more than $3 x$ longer than the distance to the Moon
- Points away from the Sun
- The shadow is plenty big enough to hide the full Moon, but only when it lines up correctly

Eclipses

Total Lunar Eclipse

-Total Lunar Eclipse - Moon moves through the umbra and is completely covered by the umbra shadow

- Moves into the penumbra and dims, then moves into the umbra and gets completely dark with an outer ring
- The Moon will NOT disappear completely because it receives some refracted (bent) light through the atmosphere

Eclipses

Total Lunar Eclipse

-Totality- the loss of the direct sunlight on the Moon due to Earth being in the way

- The sunlight beams around Earth and through it's atmosphere just like sunrises and sunsets causing a red glow to be casted on the Moon in the umbra
- That red glow reflects off of the Moon and is what we see

Eclipses

Total Lunar Eclipse

-How dim the eclipse is depends on several factors:

- The clouds in Earth's atmosphere
- Dust in the atmosphere from eruptions (volcanoes)
- Darkest eclipse if the Moon falls directly in the center of the umbra
-A total lunar eclipse can take up to 6 hours in progress from start to finish

Eclipses

Partial and Penumbral Lunar Eclipses

-Partial Lunar Eclipse - Moon passes through the penumbra and only part of the umbra

- Don't usually have the red glow like a total eclipse would
-Penumbral Lunar Eclipse - Moon passes through the penumbra only
- Tough to see because it's only partially dim
- Looks very similar to a full Moon
https://www.timeanddate.com/eclipse/north-america.html

Eclipses

Solar Eclipses

-Solar Eclipse - when the Moon moves between Earth and the Sun

- Total Solar Eclipse - when the Moon covers the disk of the Sun completely
- Partial Solar Eclipse - when the Moon covers only part of the Sun

Both are location depending!

Eclipses

The Moon's Shadow

-Annular Eclipse - solar eclipse where an annulus (ring) of light is visible around the disk of the Moon

- The Moon's angular diameter is less than that of the Sun, causing the ring

Eclipses

The Moon's Shadow

-Totality during a solar eclipse only lasts about 7.5 minutes at most

- Usually about 2 to 3 minutes

Observing an Eclipse
 -Caution!

- Even during an eclipse, the surface of the Sun is still able to be seen (either progressing in or out) causing harmful radiation to burn your eyes.

Eclipses

Conditions for an Eclipse

-Eclipse Season - when the Sun is close to the same spot in the sky as the Moon's orbit

- Eclipse season = about 32 days
- Any new Moon during that time will produce a solar eclipse and any full Moon will encounter Earth's umbra and be eclipsed

Tiddes

Tides

Introduction

- Tides - the rise and fall of the Earth's oceans created by the gravitational pull of the Moon
- Just as the Earth pulls on the Moon, the Moon pulls back due to gravity being mutual

Tides

Causes of Tides

- The attraction of the Earth to the Moon is strongest on the side of Earth that faces the Moon and weaker on the side that doesn't (at the time)
- Gravity weakens with distance
- The more distance put between the Earth's surface and the Moon at a certain location, the weaker the pull
-Differential Gravitational Force - the difference between the strong force on one side and the weaker force on the other side
-Earth's side and the Moon

Tides

Causes of Tides

Tides

Causes of Tides

-Tidal Bulge - the bulge of a body (Earth's surface) created by another's gravitational attraction to it
-Two form: one on the side nearest the pulling object (Moon) and one exactly opposite of it

Tides

Causes of Tides

- Because of the tidal bulge and Earth's rotation, we experience two time frames of "bulging" water and two of "low" water
- 24 hours: 2 high tides and 2 low tides

Tides

Solar Tides

- The Sun can also create tides on Earth, but because it's so far away, they're half the strength of the Moon's
- These aren't really noticeable until they join up with the lunar tides
- Spring Tides - abnormally large tides that occur during full and new Moons
- Neap Tides - tides that occur during quarter Moons due to the right angle between Earth, Sun, and Moon

Tides

Solar Tides

