

GRAVITY

Topics:

- Galileo Galilei
- Isaac Newton
- Laws of Motion
- Mutual Gravitation
- Orbital \&Escape Velocity
- Johannes Kepler's Laws
- Albert Einstein
- Special Relativity
- General Theory of Relativity

Galileo and Newton

Galileo Galilei

- Born on February 15, 1564 in Pisa, Italy
- Italian Polymath
- Meaning, he studied multiple mathematical subjects Ex: astronomy, physics, engineering, etc.
Major scientist credited with much of the initial understandings of motion, even before Newton

Galileo and Newton

Galileo and Motion

- Galileo began studying the motion of freely moving bodies even before he built his first telescope
- Ideas were swayed by Aristotle:
- Had a geocentric focus
- Meaning Earth is the center of the universe
- Comprised of four elements:
- Earth, water, air, and fire
- Each element had a proper "place"
- Earth and water = downward
- Air and fire = upward

- When objects fell it was because they were moving to their proper locations

Galileo and Newton

Galileo and Motion

- Aristotle's thoughts:
- Natural motions - when objects fall downward because they are moving toward their proper place
- Violent motions - produced when move in other directions other than towards their proper places
- These motions stop as soon as the force pushing them does
- Many scholars used Aristotle's work to help explain what they were studying and revealing
- Galileo broke that trend

Galileo and Newton

Galileo and Motion

- Galileo started studying falling objects
- Velocities were too great and he felt he couldn't study them accurately
- Used bronze spheres and rolled them down an incline to reduce the velocity and lengthen the time of the "fall"
- Realized it was proportional to regular falling bodies

Galileo and Newton

Galileo and Motion

- Galileo started studying falling objects (cont.)
- Found that falling bodies accelerated as they fell unlike the constant rates that Aristotle stated
- Realized that near the Earth's surface, falling objects fell at a velocity of $9.8 \mathrm{~m} / \mathrm{s}$ or $32 \mathrm{ft} / \mathrm{sec}$ at the end of 1 second
- Acceleration of Gravity - steady increase on the velocity of a falling body by $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for each second
- This acceleration does NOT depend on weight
- Both acceleration of gravity and the weight factor contradict what Aristotle stated

Galileo and Newton

Galileo and Motion

- Galileo started studying falling objects (cont.)
- Rumor has it that he experimented by dropping objects off of the Leaning Tower of Pisa but air resistance would have skewed the results

Galileo and Newton

Galileo and Motion

- Galileo started studying falling objects (cont.)
- Dave Scott demonstrated this on the moon during the Apollo 15 mission
- This all contradicted Aristotle's natural motion

Galileo and Newton

Galileo and Motion

, Galileo then focused on Aristotle's "violent" motion

- According to Aristotle, motion must be sustained by a cause
- Galileo said that if there was no friction, the object would continue to move forever ... therefore disagreeing with Aristotle again
- Eventually this idea became Newton's first law of motion
- Published his work in 1638 right before he became blind
- He passed away in 1642
- Credited with the first set of true experimental science even though some of his work was flawed by friction and inertia

Galileo and Newton

Isaac Newton

- Isaac Newton
- Born in Wools Thorpe, England on 12/25/1642
- Following the English calendar, Newton was born the same year Galileo died
- Gives Galileo a lot of credit for his work prior to his own time

Galileo and Newton

Newton and the Laws of Motion

- Thanks to Galileo, Kepler, and others, Isaac Newton put together the 3 laws of motion
- These led him to an understanding of gravity
- $1^{\text {st }}$ Law of Motion - A body continues at rest or in uniform motion in a straight line unless acted on by some force
- Ex: astronauts will drift off in space continuously unless hit by another force

Galileo and Newton

Newton and the Laws of Motion

- Momentum - measure of an object's motion
- Momentum = velocity [x] mass
- Ex: paperclip and bowling ball
- Tossing the paperclip = low mass and low velocity
- Easy to catch!
- Firing a paperclip out of a firing machine= low mass but high velocity
- ... don't even try to catch it
- Tossing a bowling ball = low velocity but high mass
- Tougher to catch than a paperclip

Galileo and Newton

Newton and the Laws of Motion

- $2^{\text {nd }}$ Law of Motion - The acceleration of a body is inversely proportional to its mass, directly proportional to the force, and in the same direction as the force
$\circ \mathrm{F}=\mathrm{ma} \quad \mathrm{F}$ (force) m (mass) a (acceleration)
- Acceleration - change in velocity
- Velocity - speed with a specific direction
- Speed - rate of motion without a direction
- Ex: driving in a circle at 60 mph is a constant speed but changing velocity due to changing directions
- All about cause and effect!

Galileo and Newton

Newton and the Laws of Motion

- $3^{\text {rd }}$ Law of Motion - To every action, there is an equal and opposite reaction
- AKA: forces need to occur in pairs directed in opposite directions
- Ex: if you stand on a skate board and jump forward, the skateboard will shoot backwards

Orbital Motion and Tides

Mutual Gravitation

- Once Newton figured out his laws, he was able to better understand gravity
- $1^{\text {st }}$ and $2^{\text {nd }}$ law - bodies accelerate downward because some force must be pulling downward on them
- Ex: the Moon orbiting the Earth
- It has to be pulled by something and motion along a curved path is accelerated motion which is required by a force causing it to follow that curved path
- Newton anticipated that the same force holding the Moon in orbit was the same as gravity here on Earth, but that it might get weaker as it reached outer space

Orbital Motion and Tides

Mutual Gravitation

- Inverse Square Law - strength of a force will decrease as the square of the distance increases
- Saw this with light
- A screen set up 1 meter away from a candle flame received a certain amount of light and then that light covered 4 sq. meters when the screen was 2 meters away
- The light intensity was inversely proportional to the square distance of the screen

Orbital Motion and Tides

Mutual Gravitation

- Earth's gravity follows the inverse square law according to Newton
- This includes the distance from the Earth's CENTER and not surface
- Ex: the Moon is 60 Earth radii away
gravity is 60^{2} (or 360)x less than at the Earth's surface acceleration at Earth's surface is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ this estimates out to be $.0027 \mathrm{~m} / \mathrm{s}^{2}$

To keep the Moon in orbit, acceleration $=.0027 \mathrm{~m} / \mathrm{s}^{2}$

Orbital Motion and Tides

Mutual Gravitation

- Gravity depends on mass, and with Earth's mass being so substantial, it's strong enough to hold the Moon in orbit

$$
\mathrm{F}=-\frac{G m_{1} m_{2}}{r^{2}}
$$

- F - force
- G-gravitational constant
- r-distance between the masses
- m_{1} - mass of the object 1
- m_{2} - mass of object 2
- The force of gravitational attraction between two masses (m_{1} and m_{2}) is proportional to the product of the masses and inversely proportional to the square of the distance between them

Orbital Motion and Tides

Mutual Gravitation

- Field - When two objects exert forces onto each other without physically touching
- Ex: Earth and the moon
- Used to describe gravity that follows the inverse square law

Orbital Motion and Tides

Orbits

- Orbital motion is how gravity pulls on an entire object - Tidal motion is how gravity pulls on parts of an object
- Newton was the first to figure out that objects which are orbiting are technically "falling"

Orbital Motion and Tides

Orbits

- Orbiting Earth:

1. An object orbiting Earth is actually falling towards Earth's center

- It misses each time because of orbital velocity
- Circular Velocity - the velocity needed to stay in a circular orbit
- Just above Earth's atmosphere, circular velocity is about $7780 \mathrm{~m} / \mathrm{s}$
(17,400 mph) with an orbital period of about 90 minutes

Orbital Motion and Tides

Orbits

- Orbiting Earth:

1. An object orbiting Earth is actually falling towards Earth's center

- Geosynchronous Satellites - satellites that orbit eastward with the rotation of Earth and remain above a fixed spot
- About 42,230 km (26,240 mi) from Earth's center
- Orbits in 24 hours

Orbital Motion and Tides

Orbits

- Orbiting Earth:

2. Objects that are orbiting each other actually revolve around their mutual center of mass

- An object doesn't orbit Earth, but rather, they orbit each other
- Remember, gravity is mutual
- Center of Mass - the balance point of the gravitational system (or two objects)
- Because of Earth's enormous mass, "they" orbit closest to Earth

Orbital Motion and Tides

Orbits

- Orbiting Earth:

3. There are closed and open orbits. A certain escape velocity is needed to leave Earth

- Closed Orbit - return the orbiting object to its original starting point
- Escape Velocity - $\left(\mathrm{V}_{e}\right)$ the velocity needed to escape a body
- Open Orbit - does not return the orbiting object back to its original starting point

Orbital Motion and Tides

Orbital Velocity

- Circular Velocity - velocity an object must have in a lateral direction to remain in a circular orbit

$$
V_{\mathrm{c}}=\sqrt{\frac{G M}{r}}
$$

- $G=$ gravitational constant $\left(6.673 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \mathrm{~kg}\right)$
- $\mathrm{M}=$ mass of the center body
- Usually Earth ($5.97 \times 10^{24} \mathrm{~kg}$)
- $r=$ radius of the orbit in meters
- Can also be distance if the information is provided as so

Orbital Motion and Tides

Orbital Velocity
, Ex: Moon's orbital velocity

- $G=6.673 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \mathrm{~kg}$
- M = Earth ($5.97 \times 10^{24} \mathrm{~kg}$)
- $r=$ distance from the Moon to the center of Earth $\left(3.84 \times 10^{8}\right)$

$$
\begin{aligned}
V_{c}= & \sqrt{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{3.84 \times 10^{8}}}=\sqrt{\frac{39.8 \times 10^{13}}{3.84 \times 10^{8}}} \\
& =\sqrt{1.04 \times 10^{6}}=1020 \mathrm{~m} / \mathrm{s}=1.02 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Orbital Motion and Tides

Orbital Velocity

- Because of the velocity needed to put the satellites in orbit, large rockets are used to get them above the atmosphere and moving at a speed that sets them in that circular orbit
- Remember, even outside of Earth's atmosphere there is still gravity
- It may be weak or pulling from another object, but it is there

Orbital Motion and Tides

Escape Velocity

- Escape Velocity - $\left(\mathrm{V}_{e}\right)$ the velocity required to escape from the surface of an astronomical body

$$
V_{e}=\sqrt{\frac{2 G M}{r}}
$$

- Exactly like the orbital velocity formula in regards to variables
- It is just $\sqrt{2}$ times the circular velocity

Orbital Motion and Tides

Escape Velocity
, Ex: Escaping Earth's atmosphere

$$
V_{\mathrm{e}}=\sqrt{\frac{2 G M}{r}}
$$

- $G=6.673 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \mathrm{~kg}$
- M = Earth ($5.97 \times 10^{24} \mathrm{~kg}$)
- $r=$ Earth's atmosphere average radius $\left(6.37 \times 10^{6} \mathrm{~m}\right)$

$$
\begin{aligned}
V_{\mathrm{c}}= & \sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{6.37 \times 10^{6}}}=\sqrt{\frac{7.96 \times 10^{14}}{6.37 \times 10^{6}}} \\
& =\sqrt{1.25 \times 10^{8}}=11,200 \mathrm{~m} / \mathrm{s}=11.2 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Orbital Motion and Tides

Kepler's Laws Reexamined

- $1^{\text {st }}$ law - orbits of the planets are ellipses with the sun at one focus
- $2^{\text {nd }}$ law - a planet moves faster when it is closest to the sun and slower when it is farther away
- Angular momentum - a measure of the rotation of the body about some point
- This remains constant for planets orbiting the sun and moons that orbit planets as long as nothing speeds them up or slows them down

Orbital Motion and Tides

Kepler's Laws Reexamined

- $3^{\text {rd }}$ law - planet's orbital period depends on its distance from the sun
- Relies on energy and the energy of motion depends on how fast the planet moves
- The gravitational attraction energy depends on the size of orbit

Orbital Motion and Tides

Tides and Tidal Forces

- Because gravity is mutual between the Earth and the Moon, the Moon's gravity can explain the ocean tides
- Tides are caused by small differences in gravitational forces
- The pull on the side of the Earth facing the Moon causing the water to flow and bulge
- The opposite happens on the other side of Earth at that time because it has the least pull

Orbital Motion and Tides

Orbital Motion and Tides

Tides and Tidal Forces

- Spring Tides - tides that are exceptionally high and exceptionally low due to a full Moon/new Moon and combination with the Sun's pull
- Yes, the Sun pulls, too, it's just not as dramatic being that it's really far away
- "Spring" isn't season related but rather the rapid rise in the water
- Neap Tides - tides that are less extreme during $1^{\text {st/ } / 3^{\text {rd }}}$ quarter Moons because of the 90 degree angle between the Sun and Moon
- Sun cancels out some of the Moon's pull

Orbital Motion and Tides

Einstein and Relativity

Introduction

- Albert Einstein (1879-1955)
- Started connecting motion and gravity
- Revised Newton's understanding about the laws of motion
- Called the theory of relativity

Einstein and Relativity

Special Relativity

- Einstein started by looking at how people saw events happening
- The Special Theory of Relativity - the first of Einstein's theories that specifies uniform motion
- First Postulate - Observers can never detect their uniform motion except relative to other objects

Einstein and Relativity

Special Relativity

- The Principle of Relativity
- Ex: Sitting in the car
- When looking out the window at the trees, everything looks like its flying past you when in reality you are the one moving and those objects are not.
- You can't tell which is actually moving without examining a third object

Einstein and Relativity

Special Relativity

- The principle of relativity cannot be done by an experiment in the object in question (i.e. the car) because it requires a third object
- This means that all motion is relative
- Must be compared in the situation
- Fancy version of the first postulate:
- The laws of physics are the same for all observers, no matter what their motion, as long as they are not accelerated.
- Accelerated is important!

Einstein and Relativity

Special Relativity

- Accelerated motion can be felt by the passengers of a vehicle or ship because of the extra force it poses
- The first postulate only refers to uniform motion
- Uniform Motion - unaccelerated motion that has no extra force in regards to a speed and direction

Einstein and Relativity

Special Relativity

- Second Postulate - The speed of light is constant and will be the same for all observers independent of their motion relative to the light source
- The speed of light is consistent for everyone so if you could measure the speed of light from two different vehicles, then you could figure out who was moving faster
- This all works as long as distances were small and velocities were low - not always going to be the case

Einstein and Relativity

Special Relativity

- Einstein reformatted Newton's work and set it up to predict that a moving object's mass is dependent on its velocity
- For objects with low velocities it doesn't really matter, but when they start reaching the speed of light it makes a big difference!
- Really high velocities = higher masses
- Experiments can be done with electrons - nanophysics

Einstein and Relativity

Special Relativity

- This whole idea is what became the basis for the famous equation:

$$
\mathrm{E}=\mathrm{m}_{0} \mathrm{c}^{2}
$$

- E - energy
- m_{0} - mass of a particle at rest
- c-speed of light constant
- Example: moving 1 kg of material at the speed of light:
- $1 \mathrm{~kg}[\mathrm{x}]\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=9 \times 10^{16}$ joules (J)
- This is the same amount of energy released from a 20 megaton nuclear bomb... that's a lot.

Einstein and Relativity

The General Theory of Relativity

- General Theory of Relativity - a more general version of the special theory of relativity that deals with accelerated as well as uniform motion
- This contains the new description of gravity
- Einstein thought about the relationship between how gravity feels and how the force of acceleration feels - He called it the Equivalence Principle

Einstein and Relativity

The General Theory of Relativity

- Equivalence Principle - Observers cannot distinguish locally between inertial forces due to acceleration and uniform gravitational forces due to the presence of a massive body
- The mass that resists acceleration is same as the mass that exerts gravitational forces
- Gravity, inertia, and acceleration are all associated with the way space is connected with time (aka: space time)

Einstein and Relativity

The General Theory of Relativity

- Space time is sometimes referred to as the curvature of space
- Gravity According to General Relativity - mass tells space time how to curve, and the curvature of spacetime (gravity) tells mass how to accelerate
- This is what links time to gravity... through accelerated mass

