

GRAVITY

Topics:

- Galileo Galilei
- Isaac Newton
 - Laws of Motion
- Mutual Gravitation
- Orbital &Escape Velocity
 - Johannes Kepler's Laws
- Albert Einstein
 - Special Relativity
 - General Theory of Relativity

Galileo Galilei

- Born on _____15, 1564 in Pisa, Italy
- Italian _____
 - Meaning, he studied multiple mathematical subjects
 Ex: astronomy, physics, engineering, etc.
- Major scientist credited with much of the initial understandings of _____, even before

- Galileo began studying the motion of _____ moving bodies even before he built his first _____
- Ideas were swayed by _____:
 - Had a _____ focus
 - Meaning Earth is the center of the universe
 - Comprised of ______ elements:
 - Earth, water, air, and fire
 - Each element had a proper "place"
 - Earth and water = _____
 - Air and fire = _____
 - When objects fell it was because they were moving to their proper locations

Galileo and Motion

- Aristotle's thoughts:
 - Natural motions when objects fall downward because they are moving toward their _____ place
 - Violent motions produced when move in other ______ other than towards their proper places
 - These motions ______ as soon as the force pushing them does
- Many scholars used _____ work to help explain what they were studying and revealing

broke that trend

- Galileo started studying _____ objects
 - were too great and he felt he couldn't study them accurately
 - Used bronze spheres and rolled them down an incline to reduce the velocity and lengthen the time of the "fall"
 - Realized it was ______ to regular falling bodies

- Galileo started studying falling objects (cont.)
 - Found that falling bodies ______ as they fell unlike the constant rates that ______ stated
 - Realized that near the Earth's surface, falling objects fell at a velocity of ______ or 32 ft/sec at the end of 1 second

 - This acceleration does _____ depend on weight
 - Both acceleration of gravity and the weight factor contradict what Aristotle stated

- Galileo started studying falling objects (cont.)
 - Rumor has it that he experimented by dropping objects off of the Leaning Tower of ______ but air ______ would have skewed the results

- Galileo started studying falling objects (cont.)
 - Dave ______ demonstrated this on the moon during the Apollo ______ mission
 - This all contradicted Aristotle's _____ motion

- Galileo then focused on Aristotle's " motion
 - According to Aristotle, motion must be ______ by a cause
 - Galileo said that if there was no ______, the object would continue to move forever ... therefore disagreeing with ______ again
 - Eventually this idea became Newton's first law of motion
 - Published his work in 1638 right before he became blind
 - He passed away in _
 - Credited with the first set of true experimental science even though some of his work was flawed by _____ and

Isaac Newton

- Isaac Newton
 - Born in Wools Thorpe, _____ on _____
 - Following the English calendar, Newton was born the same year _____ died
 - Gives Galileo a lot of credit for his work prior to his own time

Newton and the Laws of Motion

- Thanks to Galileo, _____, and others, Isaac Newton put together the 3 laws of motion
 - These led him to an understanding of _____
- Ist Law of Motion A body continues at _____ or in _____ motion in a straight line unless acted on

by some _____

 Ex: astronauts will drift off in space continuously unless hit by another force

Newton and the Laws of Motion

- Momentum measure of an object's _____
 - Momentum = _____[x] _____
 - Ex: paperclip and bowling ball
 - Tossing the paperclip = low mass and low velocity
 - Easy to _____!
 - Firing a paperclip out of a firing machine= low mass but high velocity
 - ... _____ even try to catch it
 - Tossing a bowling ball = low velocity but high mass
 - Tougher to catch than a _____

VS.

Newton and the Laws of Motion

- 2nd Law of Motion The ______ of a body is inversely ______ to its mass, _____ proportional to the force, and in the same direction as the force
 - F = ma F (_____) m (_____) a (_____
- Acceleration change in _____
- Velocity speed with a specific direction
 - Speed rate of motion without a _____
 - Ex: driving in a circle at 60 mph is a constant speed but changing velocity due to changing directions
- All about cause and ______!

Newton and the Laws of Motion

- 3rd Law of Motion To every action, there is an and _____ reaction
 - AKA: forces need to occur in pairs directed in opposite directions
 - Ex: if you stand on a skate board and jump _____, the skateboard will shoot _____

