Introduction

- Albert Einstein (1879-1955)
 - Started connecting _____ and _____
 - Revised Newton's understanding about the laws of motion
 - Called the theory of _____

Special Relativity

- Einstein started by looking at how _____ saw _____
- The Special Theory of Relativity the ______ of Einstein's theories that specifies ______ motion
- First Postulate Observers can never ______ their _____
 motion except relative to ______

objects

- **Special Relativity**
- The Principle of _____
 - Ex: Sitting in the _____
 - When looking out the window at the trees, everything looks like its flying past you when in reality you are the one ______ and those objects are ______.
 - You can't tell which is actually moving without ______ a third object

Special Relativity

The ______ of relativity cannot be done by an _____ in the _____ in question (i.e. the car) because it requires a ______ object

- This means that all motion is _____
 - Must be _____ in the situation
- Fancy version of the first _____:
 - The laws of physics are the same for all ______, no matter what their ______, as long as they are not ______.
 - Accelerated is important!

Special Relativity

- motion can be _____ by the passengers of a vehicle or ship because of the extra _____ it poses
- The first postulate only refers to _____ motion
 - Uniform Motion _____ motion that has no extra force in regards to a _____ and _____

Special Relativity

Second Postulate – The _____ of light is _____ and will be the same for all ______ independent of their _____ relative to the light source

- The speed of light is ______ for everyone so if you could measure the speed of ______ from two different vehicles, then you could figure out who was moving faster
- This all works as long as _____ were small and _____ were low not always going to be the case

Special Relativity

- Einstein reformatted ______ work and set it up to predict that a ______ object's mass is _____ on its velocity
 - For objects with low ______ it doesn't really matter, but when they start reaching the speed of light it makes a big difference!
 - Really high ______ = higher _____
 - Experiments can be done with electrons nanophysics

Special Relativity

This whole idea is what became the basis for the famous equation:

• $E - \underline{\qquad}$ • $m_0 - \underline{\qquad}$ of a particle at rest

- c speed of _____ constant
- Example: moving 1 kg of material at the speed of light:
 - 1kg [x] (3x10⁸ m/s)² = 9x10¹⁶ joules (J)
 - This is the same amount of energy released from a 20 megaton nuclear bomb... that's a lot.

The General Theory of Relativity

- - This contains the new _____ of gravity
- Einstein thought about the relationship between how gravity ______ and how the force of ______ feels

• He called it the Equivalence Principle

The General Theory of Relativity

- The mass that resists _____ is same as the mass that exerts _____ forces
 - Gravity, inertia, and acceleration are all associated with the way space is connected with time (aka: space time)

The General Theory of Relativity

is sometimes referred to as the curvature of space

- - This is what links time to gravity... through accelerated mass

