\qquad Period: \qquad Date: \qquad

Components of the Solar System Review

Astronomy
Nerd Words

1. Star-
2. Solar System -
3. Retrograde Rotation -
4. Inner Planets -
5. Outer Planets -
6. Rock -
7. Silicates -
8. Ice-
9. Terrestrial -
10. Jovian -
11. Dwarf Planets -
12. Asteroids -
13. Comets -
14. Asteroid Belt -
15. Oort Cloud -
16. Kuiper Belt -

Review:

1. What is the largest body in the solar system? How much bigger is it in comparison to the other objects in the solar system?
2. What is the sun's composition and in what percentages? Be sure to include what trace elements and in what form are found there as well.
3. How do astronomers know what the sun is made up of?
4. Name the planets in order. Which ones are the inners and which ones are the outers? Which is the biggest and which is the smallest?
5. In what direction do the planets orbit and rotate?
6. What is the axis tilt for each of the planets and what does that have to do with retrograde rotation?
7. Compare and contrast the inner and outer planets by name, composition, atmosphere, and structure.
8. What types of ice can be found on other planets? In what phases of matter would those be here on Earth?
9. Why was Pluto demoted to a dwarf planet? Explain.
10. How many moons does each of the planets have? Which dwarf planet has a moon?
11. Compare and contrast asteroids and comets. How are they similar and how are they different? Which ones would we see in our sky in most cases?
12. Where is the asteroid belt? What about Kuiper's belt? How are these two similar and how are they different?
13. What all can be found in the Oort cloud?
14. How do we determine the composition of rock planets? What about gas planets?
15. What is the formula for volume, mass, and density for planets? Explain each variable needed.
16. What are the drawbacks to how we calculate the compositions of these planets?
17. What actually causes these gas planets to have the large masses that they do? Explain.
18. What is the oldest material we have tested in the solar system? What does that tell astronomers? Explain.
