- The Earth's orbit (_____) around the Sun is _____and a bit off center
- There is a time where it is closer to the _____than other times of the year
- Common misconception: the _____are directly related to Earth's _____around the Sun
 - That summer occurs when the planet is closest to the Sun and ______occurs when it is farthest a

- The ______is true (in the northern hemisphere)
- Our summer season is when we are ______from the Sun and our winter season is when we are closest to the Sun
- Reason? = axis tilt of _
- Rotation Axis an _____line through the center of a body about which that body rotates (spins)
- Earth's rotation axis goes through each of the _____

- The axis is _____perpendicular to the orbit around the Sun
 - Meaning that the ______of the rotation axis will never change as it moves around the Sun

- Because this is _____, sunlight falls more directly on the northern hemisphere in _____ (and months around it) and more directly on the southern hemisphere in _____ (and months around it)
- This causes a variation of ______in each hemisphere at each time of the year

season

- If the surface of Earth gets sunlight at anything than 90°, then that will produce less heat
- 90° of sunlight = _____season
- >90° of sunlight =

- Northern Hemisphere:
 - June ____(90° of sunlight)
 - September _____(> 90° of sunlight)
 - December _____(>> 90° of sunlight)
 - March _____(> 90° of sunlight)
- Southern Hemisphere: _____of the north
- Equator:
 - June _____(> 90° of sunlight)
 - September ____! (90° of sunlight)
 - December _____(> 90° of sunlight)
 - March ____! (90° of sunlight)

- Irony: at Earth's _____ point from the Sun, it's summer in the northern hemisphere, at the closest it's winter
- The seasons are _____ caused by Earth's rotation axis

Solstices, Equinoxes, and Ecliptic's Tilt

Back to Earth…

- Remember that from our prospective, every way we travel seems in the sky
- The Sun's path is included in that, too!
- The rotation axis is also responsible for the Sun's in our view of the sky throughout the day

Solstices, Equinoxes, and Ecliptic's Tilt

Solstices, Equinoxes, and Ecliptic's Tilt

- Equinox the time of year when the Sun appears to cross the celestial _____
 - The number of daylight and nighttime ______ are even

• Two of them:

- Vernal Equinox the start of _____(March 20th)
- Autumnal Equinox the start of _____(September 22nd)
- Solstice the time of year when the Sun is at its greatest distance ______ and greatest distance ______ on the Earth

• Two of them:

- Winter Solstice the start of _____(December 21st)
- Summer Solstice the start of _____(June 21st)

- With the visual of the sky being ______ of reality, the pathway and ______ change, but they can be timed and tracked
- The Sun will be ______ in the sky at noon on a summer day than it would be at noon on a winter day due to its distance from the celestial equator
 - This is just like the light _____ on the planet

- On _____ 21st at 40° latitude: the noon Sun is about 73.5° above the horizon, about 16.5° from the Zenith
- On _____ 21st at 40° latitude: the noon Sun is about 26.5° above the horizon
- This causes the direction in which the Sun _____ and sets to change!
 - It won't always be true _____ and _____ directions for the rising and setting (that will adjust with the changing position)

- On _____ 21st at 40° latitude: the Sun will rise in the northeastern direction and set in the northwestern direction
 On _____ 21st at 40° latitude: the Sun will rise in the southeastern direction and set in the northwestern direction

2. The Seasons Tracking the Sun's Changing Position Let's compare side-by-side

- Tracking the Sun is very _____ dependent!
 Just like everything else...
- Many ______ and other buildings were constructed to help track the Sun, Moon, and other bodies as they traveled the sky throughout the year
- Prime example: _____(Amesbury, United Kingdom)

