\qquad
\qquad
\qquad

5.1 Practice Problems

Astronomy

Momentum

momentum = mass (velocity)

1. If the velocity of a truck is $55 \mathrm{~m} / \mathrm{s}$ and its mass is $2,000 \mathrm{~kg}$, what is its momentum?
2. If the car has a mass of 1,500 kilograms, what is its momentum? $(v=50 \mathrm{~m} / \mathrm{s})$
3. A marble rolling in a straight line toward you at a speed of $6 \mathrm{~m} / \mathrm{sec}$. Its momentum is 32.5 $\mathrm{kg} \cdot \mathrm{m} / \mathrm{sec}$. What is the mass of the marble?
4. A 0.5 -kilogram softball is thrown in a straight line at a velocity of $20 \mathrm{~m} / \mathrm{sec}$. What is the momentum of the baseball?

Acceleration

final velocity - starting velocity / time

1. A ball is released at the top of the 60 meter hill. It took 16 seconds for it to make it to the bottom. Calculate the final velocity and the acceleration.
2. A car rolled down the street for 150 meters. It took the car 23 seconds to come to a complete stop. Calculate the final velocity and the acceleration.

Net Force

force $=$ mass (acceleration)

1. What net force is required to accelerate a car at a rate of $3 \mathrm{~m} / \mathrm{s}^{2}$ if the car has a mass of 3,000 kg?
2. A car accelerates at $6 \mathrm{~m} / \mathrm{s}^{2}$. If the car has a mass of 1300 kg , how much force does the car produce?
3. What is the mass of a truck of it produces a force of $14,000 \mathrm{~N}$ while accelerating at a rate of 10 $\mathrm{m} / \mathrm{s}^{2}$?
4. Your car has a mass of 2000 kg . If your car produces a force of 7000 N , how fast will it accelerate?
5. Given a force of 200 N and an acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$, what is the mass?

Mutual Gravitation
$\frac{G m_{1} \underline{m}_{2}}{d^{2}}$

1. Determine the force of gravitational attraction between the earth ($m=5.98 \times 10^{24} \mathrm{~kg}$) and a 90 kg pilot if the pilot is in an airplane at 30000 feet above earth's surface. This would place the pilot a distance of $6.389 \times 10^{6} \mathrm{~m}$ from earth's center.
2. Communications satellites orbit the Earth at a height of $36,000 \mathrm{~km}$ above Earth's surface. The distance from Earth's surface to its center is $6.38 \times 10^{6} \mathrm{~m}$ and the satellites are about 250 kg each. What is the force of attraction?
3. What is the Earth's attraction to you at the surface? Earth's mass is $5.98 \times 10^{24} \mathrm{~kg}$ and has a distance of $6.38 \times 10^{6} \mathrm{~m}$ from surface to center. Figure out what your mass is in kg and then calculate the gravitational force.
4. What is the Sun's attraction to you? Sun's mass $2.0 \times 10^{30} \mathrm{~kg}$ and has a distance of $1.5 \times 10^{11} \mathrm{~m}$ from Earth.
